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1 Scientific Justification

Probability is both a fundamental way of viewing the world, and a core mathematical

discipline, alongside geometry, algebra and analysis. Without any doubt, probability

theory has become one of the most fascinating, fast growing and main stream areas of

mathematics. Two fundamental problems in probability theory and statistical analysis

are typical behaviors such as expectations, laws of large numbers, central limit theo-

rems and approximated sampling distribution, and rare events such as large deviations,

significant level and power.

One of the most important types of rare events is that positive random variables

take smaller values. In the past twenty years significant developments in the area have

transformed our understanding of rare events and have the potential to significantly

expand the applicability of new techniques in the general setting. The three main goals

are to systematically study the existing techniques and applications which are spread

over various topics, to further develop new methods of estimating small value problems

for Gaussian and closely related random processes, and to reformulate and investigate

problems in other areas of mathematics from the point of view of small value problems.

We believes that a theory of small value problems and their wide range of applications

should be developed.

1.1 Small Value (Deviation) Probability

Small value (deviation) probability studies the asymptotic rate of approaching zero for

rare events that positive random variables take smaller values. More precisely, let Yn
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be a sequence of non-negative random variables and suppose that some or all of the

probabilities

P{Yn ≤ εn}, P{Yn ≤ C}, P{Yn ≤ (1− δ)EYn}

tend to zero as n → ∞, for εn → 0, some constant C > 0 and 0 < δ ≤ 1. Obviously,

they are all special cases of P(Yn ≤ hn) → 0 for some function hn ≥ 0, but examples

and applications show the benefits of the separate formulations.

What is often an important and interesting problem is the determination of just how

“rare” the events {Yn ≤ εn}, {Yn ≤ C} and {Yn ≤ (1−δ)EYn} are. That is, one wants to

know the rates at which the probabilities above are tending to 0. In general, a detailed

answer to this question is seldom available in the infinite or high dimensional setting.

However, if one only asks for rates up to a constant and/or at the logarithmic level such

as logP(Yn ≤ hn)→ 0, then one has a much better chance of finding a solution and one

is studying the small value probabilities of Yn associated with the sequence hn.

In the case that all of the Yn are the same and Yn = ‖X‖ is the norm of a centered

Gaussian random element X on a separable Banach space E, then we are in the setting

of small ball with εn = ε and we can see that the analysis of small ball probabilities

are relative hard. Similarly, in various physical models, one can consider the associated

Hamiltonian (energy function) H which is a nonnegative function. The asymptotic

behavior of the partition function (normalizing constant) Ee−λH for λ > 0 is of great

interests and it is directly connected with the small value behavior P(H ≤ ε) for ε > 0

under appropriate scaling.

For a given process {Xt, t ∈ T} with index set T and fixed t0 ∈ T , the small ball

probability under the sup-norm studies the behavior of P(supt∈T |Xt−Xt0| ≤ ε) and the

lower tail probability studies the behavior of P(supt∈T (Xt−Xt0) ≤ ε), as ε→ 0+. Both

types play fundamental role in many areas of probability and they can also be viewed

as the first exit time problems (one or two sided) if the process has scaling property.

1.2 Applications of Small Value Probabilities

In the literature, small value probabilities of various types are studied and applied to

many problems of interest under different names such as small deviation/ball proba-

bilities, lower tail behaviors, boundary crossing probabilities, asymptotic evaluation of

Laplace transform for large time, etc. In addition to applications discussed in details

later, some recent ones in related area of mathematics and statistics include: Quanti-

zation problems for Gaussian measure, e.g. Dereich et al (2003); Classical, average and
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probabilistic Kolmogorov widths, e.g. Creutzig (2002); Decaying turbulent transport,

Vanden-Eijnden (2001); Passive scalar transport in Majdas model, Bronski (2003a,b);

Singularity of Burgers equation, e.g. Sinai (1997) and Molchan (1999); Capacity esti-

mates in Wiener space, e.g. Khoshnevisan and Shi (1998); Duality of entropy numbers,

e.g. Milman and Szarek (2001); Wiener-Hopf equation, e.g. Li and Zhang (2010+);

Hamiltonian and partition function, e.g. Chen and Li (2010+); Intersection local time

of independent Brownian paths and random walks, e.g. Lawler and Limic (2010); Lower

tail of the Martingale limit of variants of branching processes, e.g. Chu, Li and Ren

(2010+); Random graphs and random sum of vectors, e.g. Alon and Spencer (1992,

p148); Littlewood and Offord type problems, Tao and Vu (2006); Discrepancy theory,

e.g. Chazelle (2000). Many other applications are also surveyed in Li and Shao (2001),

including Chung’s law of the iterated logarithm, lower limits for empirical processes rates

of convergence of Strassen’s FLIL, volume of Wiener sausage and fractional Brownian

sausage.

In the following, we use three unexpected examples to show case the essential use of

the small value probabilities in geometric functional analysis, in analysis and in PDEs,

among many others.

First, probabilistic methods have been applied to geometric functional analysis suc-

cessfully. For example, large deviation estimates are by now a standard tool in the

asymptotic convex geometry. And precise links are established in Kuelbs and Li (1993)

and completed in Li and Linde (1999), between small ball probability for Gaussian mea-

sure and the metric entropy of the unit ball of the associated reproducing kernel Hilbert

space. This connection turns out to be one of the most powerful techniques and solves

significant problems associated with compactness of linear operators. Very recently,

novel applications of small deviation estimates to problems related to the diameters of

random sections of high dimensional convex bodies are realized. They imply distinc-

tion between the lower and the upper inclusions in the celebrated Dvoretzky theorem,

which says that any n-dimensional convex body has a section of dimension c log n that

is approximately a Euclidean ball. See Latala and Oleszkiewicz (2005) and Klartag and

Vershynin (2007). Results of these types have significant applications in dimensional

reduction analysis for high dimensional dates.

Second, the connections between heat equation, principle eigenvalue and asymptotic

of the exit time are well known for smooth bounded open domains and strong elliptic

operator by using Feynman-Kac formula. The asymptotic of the process staying inside

a domain for a long time can be viewed as as small value probability. For smooth
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unbounded domains or for degenerated operators, there is no general theory available

due to non-self-adjointness. However, significant progress has been made in Lifshits and

Shi (2002) and Li (2003) by using techniques from small value probability for Brownian

motion in Rd. This provides a way to studying certain long time behavior of a nonlinear

evolution equation with solution satisfied by the associated non-exit probability. The

quest for understanding other processes is likely to stimulate and to challenge probabilists

for years to come.

Third, the criterion for the smoothness of the density leads to a probabilistic proof

of Hormanders hypoellipticity theorem. The main ingredients are Malliavin calculus

and some small value estimates for the determinant of the Malliavin matrix which is

positive semi-definite. In many applications, such as the smoothness of the density of

the solutions of stochastic partial differential equations (SPDE), one needs to show the

determinant of the Malliavin matrix has negative moments of all orders, e.g. Nualart

(2009). It turns out that the negative moments estimates is equivalent to the upper

bound small value estimates. Due to the need to understand the finer properties of

SPDEs such as smoothness of theirs density, small value probability is sure to play a

much bigger role in the area.

2 Description of Lectures

The purpose of these lectures is to present the state of the art of various powerful

techniques on estimating small value probabilities, including traditional ones such as

blocking, chaining, series expansions, Laplace/Taubirean theorems, classical Gaussian

inequalities, Feynman-Kac formula, and newly developed ones such as metric entropy,

weaker correction and reverse Slepian type inequalities, determinantal approaches, etc.

Major applications include strong limit theorems in probability and statistics, smooth-

ness of density via Malliavin calculus, approximation quantities for stochastic processes,

exit time and boundary crossing asymptotics, deviations for local times. The guiding

philosophy of these lectures is that analysis of concrete processes is the most effective

way to explain even the most general methods or abstract principles.

In the first three lectures we will provide an overview of small value probabilities,

basic estimates and techniques associated with independent random variables, together

with various applications. In Lecture 4 we will present blocking techniques for the maxi-

mum partial sums and stable processes, following early work of Chung and recent refined

work for weighted sup-norms. In the next two lectures we will deal with Gaussian pro-
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cesses and related Gaussian measures in Banach space setting. Two highlights are the

precise connections between small ball provability and metric entropy estimates of the

associated generating compact operators, and the estimates for dependent sums via the

weaker correlation inequality. Their far-reaching implications are explored. Lecture 7

and 8 are devoted to more general techniques for both upper and lower bounds, including

chaining, locally non-determinant method, sup via l2 method, Riesz representations for

random fields, determinant method for smooth processes, Fourier analytic arguments.

In lecture 9, we will develop techniques for the existence of precise constants, includ-

ing orthogonal series expansions, the l2 comparison theorems, and scaling/subsdditive

method. In Lecture 10 we will present small value probabilities of lower tail type and

the one-sided exit asymptotics for both Markov and Gaussian processes. One special

feature is that, at the end of each lecture, several open and important problems related

to techniques discussed will be offered. This will ensure that the participants, especially

the new or recent entrants to the field, can thinking and working on interesting problems

and branch/connect into the area.

1. Introduction, overview and applications. We first define the small value (de-

viation) probability in several setting, which basically studies the asymptotic rate of

approaching zero for rare events that positive random variables take smaller values.

Many applications discussed in the scientific justification section are given. Benefits and

differences of various formulations of small value probabilities are examined in details,

together with connections to related fields.

2. Basic estimates and equivalent transformations. We first formulate several equiv-

alent results for small value probability, including negative moments, exponential mo-

ments, Laplace transform and Taubirean theorems. The basic techniques involved are

various useful inequalities, motivated from large deviation estimates. Some refinement

of known results are given, including to the classical Paley-Zegmund inequality. Ap-

plications to regularity and smoothness of probability laws via small value estimates of

the determinant of Malliavin matrix are discussed in the setting of stochastic (partial)

differential equations.

3. Techniques associated with independent variables. We start with probabilistic

arguments for algebraic properties of small value probabilism, such as independent sums

and products. These estimates are non-asymptotic and hence they can be applied are in

the setting of conditional probability. Separate treatments are analyzed for exponential

and power decay rates. A newly discover symmetrization inequality is proved by Fourier

analytic method. Littlewood and Offord type problems are discussed. We end with
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Komlos Conjecture on balancing vectors in discrepancy theory.

4. Blocking techniques for the sup-norm. We first present the vary useful blocking

techniques for the maximum of the absolute value of partial sums in both upper and

bound setting. The lower bound is more involved since the end position of each block

has to be controlled also. The resulting estimates play a critical role in the Chung’s

type strong limit theorems for sample paths. Similar techniques are applied to weighted

and/or controlled sup-norms for Brownian motion and stable processes. Applications to

the two-sided exit time and Wichura type functional limit theorems are indicated.

5. Links between small ball probabilities and metric entropy. For a continues centered

Gaussian processes, the generating linear operator is compact and so is the unit ball of

the associated reproducing kernel Hilbert space. The fundamental links between small

ball probability for Gaussian measure and the metric entropy are given and various far-

reaching implications are explored. Several purely probabilistic results, obtained via the

analytic connection without direct probabilistic proofs, are analyzed.

6. Small deviation (ball) estimates for sums of correlated Gaussian elements. We

treat the sum of two not necessarily independent Gaussian random vectors in a separable

Banach space. The main ingredients are Anderson’s inequality and the weaker corre-

lation inequality developed by the lecturer. Various applicants are provided to show

the power of the method. As a direct consequence, under the sup-norm or Lp-norm,

Brownian motion and Brownian bridge have exact the same small ball behavior at the

log level, and so do Brownian sheets and various tied down Brownian sheets including

Kiefer process.

7. More lower bound techniques. We first establish a commonly used general lower

bound estimate for the supremum of non-differentiable Gaussian process via the chain

argument, as well as improvements for smooth Gaussian processes. Then we present

a connection between small ball probabilities, discovered recently, that can be used to

estimate small ball probabilities under any norm via a relatively easier L2-norm estimate.

8. More upper bound techniques. We present three techniques: locally non-determinant

method, determinant method for smooth processes and Riesz representations for Gaus-

sian random fields. The key ideas are illustrated by several important processes: frac-

tional Brownian motion, L-process (infinitely differentiable), and Brownian and/or Slepian

sheet.

9. Evaluation and existence of precise constants. Most of techniques discussed so

far are for the asymptotic decay rate (up to a constant factor). Here we present a few

known methods in which the exact constants can be obtained or shown to exist. In
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the Hilbert space l2, the full asymptotic formula is developed. And with the help of a

comparison result, most small deviation probabilities under the L2-norm can thus be

treated, and in particular when the Karhunen-Loeve expansion for a given Gaussian

process can be found in some reasonable form. This is the case for Brownian motion,

fractional Brownian motion and Brownian sheets, etc. A scaling argument, similar to

the well known subadditive method, is established for the sup-norm of the fractional

Brownian motion

10. Lower tail probabilities and one-sided exit asymptotics. There are only a handful

of known examples (specific Gaussian processes) for the one-sided exit asymptotics and

it is intellectual challenging workout more examples in order to find a theory. We focus

on extending results classical for Brownian motion to the fractional Brownian motions.

The main motivations are not only the importance of these processes, but also the

force to find proofs that relay upon general principles at a more fundamental level by

moving away from crucial properties (such as the Markov property) of Brownian motion.

Fractional Brownian motion might not be an object of central mathematical importance

but abstract principles are.

7


