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We present a collection of problems and tech-

niques in various parts of mathematics from the

point of view of small value probabilities. We be-

lieve a theory of small value probabilities should

be developed and centered on:

• systematically studies of the existing techniques

and applications

• applications of the existing methods to a va-

riety of fields

• new techniques and problems motivated by

current interests of advancing knowledge
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Small value probability studies the asymptotic

rate of approaching zero for rare events that

positive random variables take smaller values.

To be more precise, let Yn be a sequence of

non-negative random variables and suppose that

some or all of the probabilities

P (Yn ≤ εn) , P (Yn ≤ C) , P (Yn ≤ (1− δ)EYn)
tend to zero as n → ∞, for εn → 0, some con-

stant C > 0 and 0 < δ ≤ 1. Of course, they

are all special cases of P (Yn ≤ hn)→ 0 for some

function hn ≥ 0, but examples and applications

given later show the benefits of the separate for-

mulations.

What is often an important and interesting prob-

lem is the determination of just how “rare” the

event {Yn ≤ hn} is, that is, the study of the

small value probabilities of Yn associated with

the sequence hn.

If εn = ε and Yn = ‖X‖, the norm of a random el-

ement X on a separable Banach space, then we

are in the setting of small ball/deviation proba-

bilities.
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Deviations: Large vs Small

• Both are estimates of rare events and depend

on one’s point of view in certain problems.

• Large deviations deal with a class of sets rather
than special sets. And results for special sets

may not hold in general.

• Similar techniques can be used, such as expo-

nential Chebychev’s inequality, change of mea-

sure argument, isoperimetric inequalities, con-

centration of measure, etc.

• Second order behavior of certain large devia-

tion estimates depends on small deviation type

estimates.

• General theory for small deviations are being

developed for Gaussian measures.

3

• Some technical difficulties for small deviations:

Let X and Y be two positive r.v’s (not neces-

sarily ind.). Then

P (X + Y > t) ≥ max(P (X > t) ,P (Y > t))

P (X + Y > t) ≤ P (X > δt) + P (Y < (1− δ)t)
but

?? ≤ P (X + Y ≤ ε) ≤ min(P (X ≤ ε) ,P (Y ≤ ε))

• Moment estimates an ≤ EXn ≤ bn can be used

for

E eλX =
∑

n=0

λn

n!
EXn

but E exp{−λX} is harder to estimate.

• Exponential Tauberian theorem: Let V be a

positive random variable. Then for α > 0

logP (V ≤ ε) ∼ −CV ε−α as ε→ 0+

if and only if

logE exp(−λV )
∼ −(1 + α)α−α/(1+α)C

1/(1+α)
V λα/(1+α)

as λ→∞.

4



Precise Links with Metric Entropy

As it was established in Kuelbs and Li (1993)

and completed Li and Linde (1999), the behav-

ior of

logP (‖X‖ ≤ ε)

for Gaussian random element X is determined

up to a constant by the metric entropy of the

unit ball of the reproducing kernel Hilbert space

associated with X, and vice versa.

• The Links can be formulated for entropy num-

bers of compact operator from Banach space to

Hilbert space.

• This is a fundamental connection that has

been used to solve important questions on both

directions.

Open: Small ball or entropy number for tensors.

Open: Probabilistic understanding for small balls

of the tensored Gaussian.

Open: Similar connections for other measures

such as stable. One direction is given in Li and

Linde (2003) which could be used to disprove

the duality conj. on entropy numbers of a com-

pact operator.
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Sums of Gaussian Random Vectors

Thm:If X and Y are independent and

lim
ε→0

εγ logP (‖X‖ ≤ ε) = −CX ,
lim
ε→0

εγ logP (‖Y ‖ ≤ ε) = −CY
with 0 < γ <∞ and 0 ≤ CX , CY ≤ ∞. Then

lim sup
ε→0

εγ logP (‖X + Y ‖ ≤ ε) ≤ −max(CX , CY )

lim inf
ε→0

εγ logP (‖X + Y ‖ ≤ ε)

≥ −
(
C

1/(1+γ)
X + C

1/(1+γ)
Y

)1+γ
.

Open: Find the exact constant in terms of CX,

CY and covariances of X and Y .

The following is given in Li (1999) based on a

weaker correlation inequality.

Thm: If two joint Gaussian random vectors X

and Y , not necessarily independent, satisfy 0 <

CX <∞ and CY = 0 with 0 < γ <∞. Then

lim
ε→0

εγ logP (‖X + Y ‖ ≤ ε) = −CX .
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The Lower Tail Probability

Let X = (Xt)t∈S be a real valued Gaussian pro-

cess indexed by T . The lower tail probability

studies

P
(
sup
t∈T

(Xt −Xt0) ≤ x

)
as x→ 0

with t0 ∈ T fixed. Some general upper and

lower bounds are given in Li and Shao (2002+).

In particular, for d-dimensional Brownian sheet

W (t), t ∈ Rd,

logP


 sup
t∈[0,1]d

W (t) ≤ ε


 ≈ − logd 1

ε
.

Note that we can write

‖X‖ = sup
f∈D

f(X)

so the lower tail formulation is more general than

the small ball problem.

Open: Are there any connections with proper-

ties of the generating operator?
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Positivity Exponent of Random Polynomial

Let a0, a1, . . . , an ∈ R be i.i.d. Define the random

polynomial

fn(x) :=
n∑

i=0

aix
i .

Let Nn denote the number of real zeros of fn(x).

Dembo, Poonen, Shao and Zeitouni (2002): If

ai ∼ N(0,1), then For n even,

P(Nn = 0) = P(fn(x) > 0, ∀x ∈ R) = n−b+o(1)

where

b = −4 lim
t→∞

1

t
logP

(
sup

0≤s≤t
Y (s) ≤ 0

)

and {Y (t), t ≥ 0} is a centered stationary Gaus-

sian process with

EY (t)Y (s) = 2e−(t−s)/2

1+ e−(t−s)

Moreover, 0.4 < b ≤ 2. Their numerical simula-

tions for degree n ≤ 210 suggest b ≈ 0.76±0.03.

The estimate is also true for ai with all finite

moments based on KMT strong approximations.
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Conj: The result is true for any mean zero ai in

DAN. This is offered in Poonen and Stoll (1999)

in the study of Density of Hyperelliptic curve of

large genus with odd Jacobian over Q.

Conj: Dembo, Poonen, Shao and Zeitouni (2002).

For n even and ai symmetric stable of order α,

0 < α < 2,

P(Nn = 0) = n−bα+o(1)

for some bα > b

Open: If {Xt, t ≥ 0} is a differential stationary

Gaussian process with positive correlation, what

is the limit

lim
T→∞

1

T
logP

(
sup

0≤t≤T
Xt ≤ 0

)
?

Open: Find sharp estimates for small deviation

P (Nn ≤ (1− δ)ENn)
and large deviation

P (Nn ≥ (1 + δ)ENn)
as n→∞ for 0 < δ < 1, where ai are i.i.d N(0,1)

and ENn ∼ (2/π) logn given in Kac (1943).

9

Let W (t), t ≥ 0, be the standard Brownian mo-

tion starting at 0. Denote by W0(t) =W (t) and

Wm(t) =
∫ t

0
Wm−1(s)ds, t ≥ 0, m ≥ 1.

the m times integrated Brownian motion for

positive integer m. Using integration by parts,

Wm(t) =
1

m!

∫ t

0
(t− s)mdW (s), m ≥ 0.

The Rm+1 valued process

(W0(t),W1(t), · · · ,Wm(t))

is Markov with degenerated generator

L = ∂2

∂x2
0

+
m∑

k=1

xk−1
∂

∂xk
.

10

Li and Shao (2003+): There exist constants

rm > and r > 0 such that

P
(

sup
0≤s≤log t

Y (s) ≤ 0

)
≈ t−r+o(1),

P
(
sup

0≤s≤t
X(s) ≤ 1

)
≈ t−r+o(1),

P
(
sup

0≤t≤1
X(t) ≤ ε

)
≈ ε2r+o(1),

P
(
sup

0≤t≤1
Wm(t) ≤ ε

)
≈ εrm+o(1),

P
(
sup

0≤s≤t
Wm(s) ≤ 1

)
≈ t−rm(2m+1)/2+o(1)

and rm(2m + 1)/2 decrease to r as m → ∞,

where X(t) is a centered Gaussian process with

EX(t)X(s) =
2st

t+ s
.

In particular, b = 4r ≤ 1 since r1 = 1/6 from

McKean (1963), Sinai (1992).

Open: Finding b = 4r and rm, m ≥ 2.
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Brownian pursuit problems

Let {Wk(t); t ≥ 0}(k = 0,1,2, . . . ) denote inde-

pendent Brownian motions all starting from 0.

Define

τn = inf{t > 0 :Wi(t) = 1+W0(t) for some 1 ≤ i ≤ n}.
It is known for the exit time τn of a cone that

P{τn > t} ∼ ct−γn, as t→∞,
where γn is determined by the first eigenvalue of

the Dirichlet problem for the Laplace-Beltrami

operator on a subset of the unit sphere Sn in

Rn+1.

Conj: Bramson and Griffeath (1991), E τ4 <∞.

Li and Shao (2001): E τ5 < ∞ by using Gaus-

sian distribution identities and the Faber-Krahn

isoperimetric inequality.

Li and Shao (2002): limn→∞ γn/ logn = 1/4 by

developing a normal comparison inequality (a

‘reverse’ Slepian’s inequality). This verified a

conjecture of Kesten (1992).
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Let B−i, 0 ≤ i ≤ m − 1 and Bj, 1 ≤ j ≤ n be

independent Brownian motions, starting at 0.

Define the first capture time by

τ1,m,n = inf{t > 0 : max
1≤j≤n

Bj(t) = min
0≤i≤m−1

B−i(t)+1}

and the overall capture time by

τm,m,n = inf{t > 0 : max
1≤j≤n

Bj(t) = max
0≤i≤m−1

B−i(t)+1}.

Then we have

P
(
τ1,m,n > t

)

= P
(
max

1≤j≤n
sup

0≤s≤t
max

0≤i≤m−1
(Bj(s)−B−i(s)) < 1

)

and

P (τm,m,n > t)

= P
(
max

1≤j≤n
sup

0≤s≤t
min

0≤i≤m−1
(Bj(s)−B−i(s)) < 1

)
.

Conj: Let

P
(
τn,n,1 > t

)
∼ ct−βn as t→∞.

Then βn ∼ n−1 logn
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The Exit Time from Unbounded Domain

Consider the first exit time τD of (d+1)-dimensional

Brownian motion from the unbounded domain

D = {(x, y) ∈ Rd+1 : y > f(x), x ∈ Rd}

starting at the point (x0, f(x0) + 1) ∈ Rd+1 for

some x0 ∈ Rd, where the function f(x) on Rd

is convex and f(x) → ∞ as the Euclidean norm

|x| → ∞. In Li (2002), very general estimates

for the asymptotics of logP(τD > t) are found

by using Gaussian techniques. In particular, for

f(x) = exp(|x|p), p > 0,

lim
t→∞

(log t)2/p

t
logP(τD > t) = −j2ν /2

where ν = (d− 2)/2 and jν is the smallest pos-

itive zero of the Bessel function Jν. Sharp es-

timates are obtained in Lifshits and Shi (2003)

for f = |x|γ. the Dirichlet heat kernal is studied

in van den Berg (2003+):

Conj: The general lower bound in Li (2002) is

sharp.
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Connections with heat equation: Let

v(x, t) = Px{τD ≥ t}, x ∈ Rd+1.

Then v solves
{

∂v
∂t =

1
2∆vinD

v(x,0) = 1 x ∈ D.
So our results can be viewed as long time be-

havior of log v(x, t). Furthermore, a close related

and useful technique in studying certain asymp-

totic problems is the logarithmic transformation

V = − log v(x, t) which changes the above equa-

tion into a nonlinear evolution equation for V .

This can then be viewed as a stochastic control

problem.

Connections with principal Dirichlet eigen-

value: For bounded smooth open (connected)

domain D̃, by Feynman-Kac formula,

lim
t→∞

t−1 logP
(
τ
D̃
> t

)
= −λ1(D̃)

where λ1(D̃) > 0 is the principal eigenvalue of

−∆/2 in D̃ with Dirichlet boundary condition.
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Fundamental Inequalities

• Gaussian Isoperimetric inequalities; Ehrhard’s

inequality; S-inequality; Logarithmic Sobolev in-

equality; Bobkov’s inequality; etc.

• Concentration and deviation inequalities

• Comparison inequalities; Anderson’s inequal-

ity; Shift type inequalities; Slepian’s inequality;

Gordon’s min-max inequalities; Reverse Slepian

type inequalities; etc.

• Correlation inequalities.

The Gaussian Correlation Conj: For any two

symmetric convex sets A and B in a separable

Banach space E and for any centered Gaussian

measure µ on E,

µ(A ∩B) ≥ µ(A)µ(B).

Sidak inequality: The above holds for any slab

B.
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The weaker Correlation inequality: For any

0 < λ < 1, any symmetric, convex sets A and B,

µ(A∩B)µ(λ2A+(1−λ2)B) ≥ µ(λA)µ((1−λ2)1/2B).

In particular,

µ(A ∩B) ≥ µ(λA)µ((1− λ2)1/2B)

and

P(X ∈ A, Y ∈ B) ≥ P
(
X ∈ λA

)
P
(
Y ∈ (1−λ2)1/2B

)

for any centered joint Gaussian vectors X and

Y .

The varying parameter λ plays a fundamental

role in applications, see Li (1999). It allows us

to justify

µ(A ∩B) ≈ µ(A) if µ(A)¿ µ(B).

Note also that

µ(∩mi=1Ai) ≥
m∏

i=1

P(λiAi)

for any λi ≥ 0 with
∑m
i=1 λ

2
i = 1.
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Smooth Analysis of Simplex Method for Lin-

ear Programming

Simplex method for linear programming:

maxBTx s.t. Ax ≤ y

• Worst case analysis: exponential.

• Average (Gaussian for A) case analysis: poly-

nomial.

• Widely used in practice.

Smooth analysis of simplex method:

maxBTx s.t. (A+ σG)x ≤ y

where G = (gij), 1 ≤ i, j ≤ n, with i.i.d normal

gij.

Edelman (1988):

P
(
‖G−1‖ > t

)
≤
√
n

t
.

with the best constant. Here ‖A‖ = max‖x‖=1 ‖Ax‖
denotes the operator norm of A.
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Sanker, Spielman and Teng (2002):

P
(
‖(G+A)−1‖ > t

)
≤ 1.823

√
n

t

Gaussian Perturbation Conj:

P
(
‖(G+A)−1‖ > t

)
≤ P

(
‖G−1‖ > t

)

This is a part of understanding how things be-

havior under perturbation, such as Ax = b for

the input (A, b).

Note that

‖M−1‖ = 1

d(M,S)
so this is really a small value problem. Here the

distance

d(M,S) = inf
S∈S

d(M,S)

= inf
det(sij)=0




d∑

i,j=1

(mij − sij)2



1/2

.
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Intersection Local Times

The mathematical notion of various intersection

local times was motivated by the models of poly-

mer physics and quantum field theory.

One of the basic quantity in the study is the as-

sociated Hamiltonian (energy function) H which

is a nonnegative function of the paths. The

asymptotic behavior of the partition function

(normalizing constant) E e−λH for λ > 0 is of

great interests and it is directly connected with

the small value behavior P(H ≤ ε) for ε > 0 under

appropriate scaling.

In the one-dim Edwards model a path of length

t receives a penalty e−βHt where Ht is the self-

intersection local time of the path and β ∈ (0,∞)

is a parameter called the strength of self-repellence.

In fact

Ht =
∫ t

0

∫ t

0
δ(Wu −Wv)dudv =

∫ ∞

−∞
L2(t, x)dx

20



It is known, see van der Hofstad, den Hollander

and König (2002), that

lim
t→∞

1

t
logE e−βHt = −a∗β2/3

where a∗ ≈ 2.19 is given in terms of the principal

eigenvalues of a one-parameter family of Sturm-

Liouville operators. Bounds on a∗ appeared in

van der Hofstad (1998).

It is not hard to show

lim
ε→0

ε2/(p+1) logP{
∫ ∞

−∞
Lp(1, x)dx ≤ ε} = −cp

for some unknown constant cp > 0. Bounds on

cp can be given by using Gaussian techniques.

Open: Small deviation for the mixed intersec-

tion time.
∫ ∞

−∞

m∏

i=1

L
pi
i (1, x)dx

where Li are i.i.d local times and pi ≥ 1.

Open: Small deviation for two-dim re-normalized

self-intersection time.
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Hitting Probability of a Set

Let Xt, t ≥ 0, be a fractional Brownian motion

on Rd with index 0 < H < 1. Then

P( inf
1≤t≤2

|Xt| ≤ ε)





≈ εd−1/H if d > 1/H
> δ if d < 1/H

≈ (log1/ε)−?? if d = 1/H

The motivations for extending results classical

for Brownian motion to the fractional Brownian

motions are not only the importance of these

processes, but also the force to find proofs that

relay upon general principles at a more funda-

mental level by moving away from crucial prop-

erties (such as the Markov property) of Brown-

ian motion. Fractional Brownian motion might

not be an object of central mathematical impor-

tance but abstract principles are.
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Random graphs

Let G(n, p) be a random graph and ω(G) denote

the number of vertices in the maximum clique

of the graph G.

Thm: For k = o(logn),

P(ω(G(n,1/2)) ≤ k) = exp(−n2+o(1))

Note that a o(1) in the hyper-exponent leaves

lots of room! Also, It is not difficult to show

that ω(G(n,1/2)) is concentrated at 2 log2 n

Let

P(Xij = 0) = p = pn, P(Xij = 1) = 1− p
and

Hn =
∑

1≤i<j<k<m≤n
XijXjkXkmXmi

Then

P(Hn = 0)





→ 1 ifp = Ω(n−1)

≤ poly. small ifp = n−2/3

≤ exp. small ifp = n−1/2

Open: What is the correct cut off behavior?
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Littlewood and Offord Type Problems

Let a1, a2, · · · , an be vectors in Rd with |ai| ≥ 1

for all i. Let ηi be i.i.d r.v’s with P(ηi = 0) =

P(ηi = 1) = 1/2. Then

P



∣∣∣∣∣∣

n∑

i=1

ηiai

∣∣∣∣∣∣
≤ D


 ≤ c√

n
.

where D ≥ 1 is a given constant and c depends

only on D.

A considerable literature has been devoted to

this problem, beginning with Erdos (1945). A

variety of tools from extremal set theory and

geometry has been used, see Kleitman (1970),

Griggs (1980), Frankl and Füredi (1988).
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Slicing the Cube

A cube of dimension n and side 1 is cut by a

hyperplane of dimension n−1 through its center.
The usual n − 1 measure of the intersection is

bounded between 1 and
√
2. Hensley (1979) and

Ball (1988).

Thm: Let Uj be i.i.d uniform on [−a, a]. Then

for any vector v = (v1, · · · , vn) ∈ Rn with |v| =
(∑n

j=1 v
2
j

)1/2

1

(1 + a2|v|2)1/2
≤ P(|

n∑

j=1

vjUj| ≤ 1) ≤
√
2

(1 + a2|v|2)1/2

Open: Sharp bounds for εk or general symmet-

ric Xj with EX2
j = 1
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Combinatorial Discrepancy

Let (V,F) be a set system, where V = {1, · · · , n}.
Such a combinatorial structure is often called a

hypergraph. The discrepancy of a set system

F ⊂ 2V is

disc(F) = min
χ

max
A∈F

∣∣∣∣∣∣

∑

a∈A
χ(a)

∣∣∣∣∣∣

where χ ranges over “two-colorings” χ : V →
{−1,+1}.

Thm: Any set system (V,F) such that |V | =
|F| = n has O(

√
n) discrepancy. Some set sys-

tems have a matching lower bound. Equiva-

lently,

P


max
F∈F

∣∣∣∣∣∣

∑

v∈F
εv

∣∣∣∣∣∣
≤ C
√
n


 ≥ 1

2n

and

P


max
F∈F

∣∣∣∣∣∣

∑

v∈F
εv

∣∣∣∣∣∣
≤ c
√
n


 = 0 <

1

2n

for some constants C > c > 0.
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Beck-Fiala Conj. (1981): disc(F) ≤ Ct1/2 if

|F| ≤ t.

Thm: Let A = (aij), where aij = 0 or 1, be a

matrix of size n× n. Then for some C > 0

P


 max

1≤m≤n
max

1≤k≤n

∣∣∣∣∣∣

m∑

i=1

k∑

j=1

aijεij

∣∣∣∣∣∣
≤ C(logn)4


 ≥ 1

2n
.

• The Beck-Fiala conjecture implies C(logn)3

bound.

• There is a lower bound of Ω(logn) given in

Beck (1981).

Open: Find the correct order of the lower ‘cut

off’ function.

Open: Gaussian version.
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Balancing vectors

Consider an arbitrary pair of symmetric con-

vex bodies, U and V in Rn. Define β(U, V ) =

βn(U, V ) as the smallest r > 0 satisfying the

following: for every sequence u1, · · · , un of vec-

tors in U ⊂ Rn there exists a choice of signs

ε1, · · · , εn = ±1 such that
∑n
i=1 εiui ∈ rV . And

similarly, define α(U, V ) = αn(U, V ) as the small-

est r > 0 such that
∑m
i=1 εiui ∈ rV for all 1 ≤ m ≤

n. Clearly, βn(U, V ) ≤ αn(U, V ).

Reformulation: βn(U, V ) is the smallest r > 0

such that for any ui ∈ U , 1 ≤ i ≤ n,

P



∥∥∥∥∥∥

n∑

i=1

εiui

∥∥∥∥∥∥
V

≤ r


 ≥ 1

2n

and αn(U, V ) is the smallest r > 0 such that for

any ui ∈ U , 1 ≤ i ≤ n,

P


 max

1≤m≤n

∥∥∥∥∥∥

m∑

i=1

εiui

∥∥∥∥∥∥
V

≤ r


 ≥ 1

2n

where ‖ · ‖V is the norm with the unit ball V in

Rn.
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Let Bn
p denote the unit Lp-ball in Rn.

• β(Bn
2 , B

n
2) ≤

√
n, i.e. for any u1, · · · , un ∈ Rn

with |ui|2 ≤ 1, there exist η1, · · · , ηn = ±1 so
that

|η1u1 + · · ·+ ηnun| ≤
√
n.

• Komlos Conjecture (197?): β(Bn
2 , B

n∞) ≤ C for
some absolute constant C > 0. It is well known
that Komlos Conjecture would imply Beck-Fiala
Conjecture.
• Beck and Fiala (1981): β(Bn

1 , B
n∞) ≤ 2.

• Spencer (1985, 1986):
c
√
n ≤ β(Bn

∞, B
n
∞) ≤ α(Bn

∞, B
n
∞) ≤ C

√
n

β(Bn2 , B
n
∞) ≤ C logn

• Spencer Conj: α(Bn
p , B

n
p ) ≤ Cn1/2+o(1) for

1 ≤ p <∞.
• Giannopoulos (1997): β(Bn

2 , V ) ≤ 6 logn if
γn(V ) ≥ 1/2 where γn is the standard n-dimensional

Gaussian measure with density (2π)−n/2e−‖x‖
2
2/2.

• Banaszczyk (1998): β(Bn
2 , V ) ≤ C if γn(V ) ≥

1/2 and in particular, β(Bn
2 , B

n∞) ≤ C
√
logn.

Open: All Conj. and results above hold for ξk.
Are there any comparison results between ξk and
εk?
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Three Permutation Conj: Let σi, i = 1,2,3

be three permutations on [n]. Then

P


 max

1≤i≤3
max

1≤m≤n

∣∣∣∣∣∣

m∑

j=1

εσi(j)

∣∣∣∣∣∣
≤ c


 ≥ 1

2n

for some absolute constant c, independent of n.

The k-permutation Conj: disc= Ω(
√
k).

• disc≥ c
√
k via Hadamard matrix.

• disc≤ C(k logn) via the Partial coloring lemma.

• disc≤ C(
√
k logn) via the entropy method.

Gaussian k-permutation Conj: Under the Gaus-

sian correlation conj.

P


 max

1≤m≤k
max

1≤j≤n

∣∣∣∣∣∣

j∑

i=1

ξσm(i)

∣∣∣∣∣∣
≤ hk




≥
k∏

m=1

P


 max

1≤j≤n

∣∣∣∣∣∣

j∑

i=1

ξσm(i)

∣∣∣∣∣∣
≤ hk




≥
k∏

m=1

exp(−cn/h2
k) = exp(−cnk/h2

k) ≥ 2−n

if hk = Ω(
√
k).

• hk = Ω(k) via the weaker Gaussian correlation

inequality in Li (1999).
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Random trigonometric polynomials

Salem and Zygmund (1954): Given complex

numbers z1, · · · zn, there exists a choice of + and

− such that

sup
0≤t≤1

∣∣∣∣∣∣

n∑

k=1

±zkeikt
∣∣∣∣∣∣
≤ C


logn

n∑

k=1

|zk|2



1/2

where C is an absolute constant.

Kahane (1980): There is a polynomial

P (z) =
n∑

k=1

eiθkzk

such that

sup
|z|=1

|P (z)| ≤
√
n(1 +O(n−19/34(logn)1/2).

Open: Better estimate?
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Erdős’ Conjecture vs Littlewood’s Conjecture

For εk = ±1, k ≥ 1, define

Pn(t, ε) =
n∑

k=1

εke
2πk ti.

Erdős conjectured that there is an absolute con-

stant c > 0 such that for all n ≥ 2 and all se-

quence εk

sup
0≤t≤1

|Pn(t, ε)| ≥ (1 + c)
√
n.

Littlewood conjectured the opposite, that is,

there are cn → 0 and a sequence ε such that

sup
0≤t≤1

|Pn(t, ε)| ≤ (1 + cn)
√
n.

Small value reformulation: Take i.i.d εk with

P(εk = ±1) = 1/2,

P
(
sup

0≤t≤1
|Pn(t, ε)| ≤ (1 + c)

√
n

)
= 0 < 2−n

vs

P
(
sup

0≤t≤1
|Pn(t, ε)| ≤ (1 + cn)

√
n

)
≥ 2−n

Gaussian version: Replace εk by ξk.
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Discrepancy in Arithmetic Progression

It is a classical result of Van der Waerden that

any two coloring of the integers contains an

arbitrarily long monochromatic arithmetic pro-

gression. Below is a complementary result that

not all arithmetic progression can be evenly bi-

colored.

Roth’s 1
4 Thm (1964): Any two-coloring of

the integers [n] = {1, · · · , n} contains an arith-

metic progression whose discrepancy is Ω(n1/4.

Roth (1964): The bound of Ω(n1/2(logn)1/2.

Sarkozy: The bound of Ω(n1/3+δ, see Erdos

and Spencer (1974).

Beck (1981): The bound of Ω(n1/4(logn)3).

Matousek and Spencer (1996): The bound

is tight.
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Reformulation: For the collection A of all arith-

metic progressions of [n],

P


max
A∈F

∣∣∣∣∣∣

∑

i∈A
εi

∣∣∣∣∣∣
≤ Cn1/4


 ≥ 1

2n

and

P


max
A∈F

∣∣∣∣∣∣

∑

i∈A
εi

∣∣∣∣∣∣
≤ cn1/4


 = 0 <

1

2n

for some constants C > c > 0.

• Fourier transform method by Roth.

• Eigenvalue technique by Lovasz and Sos.

• Harmonic analysis approach

Conj:

logP


max
A∈F

∣∣∣∣∣∣

∑

i∈A
ξi

∣∣∣∣∣∣
≤ n1/4


 ≈ −n
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Discrepancy in Geometry

A set of n points in Rd is well-spread if the ratio

of the largest distance and the smallest distance

is less than cn1/d for some absolute constant

c > 0.

Alexander (1990): For any two-coloring of a

well-spread set of n points in Rd, there is an open

hyperplane H such that |D(H)| = Ω(n1/2−1/2d).

Matousek (1995): Any set of n points in Rd

can be two-coloring in such a way that the max-

imum discrepancy of any halfspace is at most

proportional to n1/2−1/2d.

• Similar to small deviation estimates, the finite

difference method is a power tool in discrepancy

analysis here.
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Hadamard Conjecture: There exists an Hadamard

matrix Hn, or n by n matrix with every entry ±1
such that HHT = nI for every n = 4m, m ≥ 1.

To restate the Hadamard Conjecture, let εij be

i.i.d random variables with P(εij = ±1) = 1/2,

1 ≤ i, j ≤ n. Then the equivalent formulation of

the Hadamard Conjecture is

P


 max

1≤j 6=k≤n

∣∣∣∣∣∣

n∑

i=1

εijεik

∣∣∣∣∣∣
< 1


 ≥ 2−n

2
.

for n = 4m.

Gaussian Hadamard Conjecture: Let ξij, 1 ≤
i, j ≤ n, be i.i.d standard normal random vari-

ables. Then

logP


 max

1≤j 6=k≤n

∣∣∣∣∣∣

n∑

i=1

ξijξik

∣∣∣∣∣∣
< 1


 ≈ −n2.

The quest for proofs of these conjectures is likely

to stimulate and to challenge probabilists for

years to come.
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