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1 Introduction

Let E denote a real separable Banach space and assume p is a centered non-degenerate
Gaussian measure on E. In [2] Ehrhard proved that if A, B are non-empty convex Borel
subsets of E and .

d(z) = (2m)71/? / e ¥ 2 du,

— o0

then for 0 < X <1 we have
(1.1) P lopu(AA+(1=NB) 2 A0 opu(A)+(1-A)@ " o u(B)

where M+ (1 -NB={ra+(1-Xb:acAbec B}.

This is a delicate result, which implies the isoperimetric inequality for Gaussian mea-
sures when the set enlarged is convex, and has some other interesting consequences as well,
see, for example [3], [5] and [6]. Ehrhard’s proof first obtains this result when p = 7y, the
canonical Gaussian measure on R”, and then extends it to the infinite dimensional setting
using the convexity of A and B and the log-concavity of Gaussian measures. To establish
(1.1) when y = 7, Ehrhard first obtained (1.1) for (R',7). Then, by using Gaussian
symmetrizations, the result is lifted to (R™,~,) by showing that if C' is an open (closed)
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convex set of R”, and f is any Gaussian symmetrization of R™ (see definitions below), then
f(C) is open (closed) and convex. After the convexity of f(C') is established, the proof
considers A and B as n-dimensional convex sets in parallel hyperplanes of R**! and takes
C = Up<a<1(AA + (1 — A)B). Hence C is convex, and if f is an n-symmetrization of RnH1
in the direction u parallel to the hyperplanes containing A and B, then f(C) is convex
in R™*1, Once one understands the Gaussian symmetrizations defined below, (1.1) is now
immediate.

It has been a question of interest for some time as to whether (1.1) holds when A and
B are arbitrary Borel sets. In fact, even if one set, say A, is convex, but B is Borel,
the result is open and of interest. What we establish here is that (1.1) holds if A and B
are Borel subsets of E such that A is convex and B is the complement of a convex set.
This is a long way from allowing B to be an arbitrary Borel set, but the proof requires
something new and proceeds somewhat differently than when A and B are both convex.
In particular, we first obtain the result for (R!,~;), and then we lift the result, using set
inclusions and Gaussian symmetrizations to (R"™,+,). This alternative route is required
since the set C' = Up<a<i(AA + (1 — A)B) of R™*! mentioned above need not be convex.
We also need a modification of Ehrhard’s proof to lift (1.1) to the infinite dimensional
setting, since we have less convexity available. In fact, our proof shows that if (1.1) holds
for (R',v;) when A and B are arbitrary Borel sets (or A is convex set and B is a Borel
set), then the same results can be lifted to the infinite dimensional setting. Indeed, it can
be seen that such a result extends more easily, since it is a stronger result on (R, 7).

The theorem we prove is the following.

THEOREM 1 Let u be a centered Gaussian measure on a real separable Banach space E,
and assume A, B are non-empty Borel subsets of E such that A and B¢ are convex. Then
for0<A<1

(1.2) @ rou(AA+ (1 =-N)B)> A Topu(A)+ (1~ N)® 1 opu(B).

REMARK The set AA+(1—A)B need not be a Borel subset of E, but since E is complete
and separable it is easy to see it is an analytic subset of E. Hence AA + (1 — A)B is always
completion measurable for any Borel probability, [1, p391]. Of course, a similar result holds
when (E, i) is replaced by (R™, v, ). Thus the left-hand term in (1.1) or (1.2) makes perfect
sense when p is completed, and we therefore ignore further discussion of measurability for
AA + (1 — A)B in the remainder of the paper.

Section 2 contains the definitions for Gaussian symmetrizations and a proof of (1.2) for
(R, v1). Section 3 lifts the result to (R™,v,) and finishes with the proof of Theorem 1.
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2 Gaussian symmetrizations and Theorem 1 for (R,v1)

We write {z,y) to denote the usual inner product on R", and for u of length one in R",
A € R, use H(u, ) to denote the open half-space

H(u,A)={z € R" : {z,u) < A}.

~n is the canonical Gaussian measure on R”™ and for each affine subspace L of dimension
k we write v 1, to denote the Gaussian measure (canonical) whose mean is the orthogonal
projection of the origin onto L. To simplify notation we will use vz when the affine subspace
L is understood.

If T is a subspace of R" of dimension n — k(1 < k¥ < n) and u is orthogonal to T,
{(u,u) = 1, we denote the k-symmetrization about T in the orthogonal direction u by
S(T,w). That is, if A is an open (or closed) subset of R™ we define S(T,u)(A4) = S(4) to
be the subset of R™ satisfying:

For every = € T, T+ the orthogonal complement of T, and y& = 7 471+, the set
S(A)N(z+T+) is given by

(@) ¢ifw(AN(z+T4) =0

CD3E) e+ THifw(An(@z+TH) =1
(i) H(u,a)N(z+TL) (H(u,a)N(z+T+) when A is closed) if vx(AN(z+T+)) € (0,1)
and a = a(z, A) satisfies

Ye(H(w,a) O (z +TH) = (A0 (2 + TH)).

The definition of S(T,u) in (2.1) differs from that in [2] since H(u, ) = {z : {z,u) < A}
rather than {z : (z,u) > A} asin [2]. However, this.change does not effect the regularity of
the mappings S(T, u), and hence by Theorem 2.1 of [2] each k-symmetrization § = S(T,u)
in R™ is both open and closed, i.e. it maps open (closed) sets of R™ to open (closed) sets of
R™. A similar statement holds for all other results we quote from [2], but we will not bother
to include such statements. We will call our symmetrizations left symmetrizations and
those of Ehrhard right symmetrizations several times later in the paper. However, unless
mentioned explicitly, symmetrizations should always be considered left symmetrizations.

Next we will prove the following lemma which is Theorem 1 for (R, ).

LEMMA 1 Let A = (a,b), —0 < a < b < 400 and B = (—o0,¢c)U (d,+00), —0 < ¢ <
d<+o00. Thenfor 0 < A <1

(2.2) A+ (1= N)B) > B((M: + (1 - \)a).
where

(23) () - B(a) = n(A) = B(6) () +(1 - &(d) = n(B) = ¥(6)

Proof. Since A + (1 — \)B = (=00, Ab + (1 — X)) U (Aa + (1 = A)d, +0), we only need
to show

(2.4) BN+ (1= M)+ (1 —@a+ (1= N)d)) > ®(M6; + (1 = N)ba2).
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Let 81,6, and X be fixed with 0 < A < 1, since (2.2) holds if A = 0 or 1. Consider
b= b, as a function of a and d, as a function of ¢ given in (2.3). Since ®'(z) is strictly
positive, we have from (2.3) that the functions b = bo and d = d. are uniquely defined for
—0o<a<L -8, —c0<c< b and

6 ifa=—c0 =6 fe=—-0
(25) b_{—{—oo ifa=—-6 d_{—f—oo ife=6, °

Furthermore, for —co < a < —6; and —oco < ¢ < 6,

(2.6) b = exp((b* — a?)/2) d' = exp((d® — ¢%)/2).
Let
(2.7) fla,e) = @b+ (1 — M)+ (1 — d(ha + (1 — A)d)).

It is easy to check that (2.4) holds (i.e. f(a,c) > ®(A61 + (1 — A)f3)) on the boundary
given by (2.5). So we only need to show that (2.4) holds for the pairs (a,¢) such that
—00 < a< —b, —co < c< by and

(2.8) % =0 and %‘iﬁ =0

Now we have from (2.8)

(2.9) AY' - exp(—(Ab+ (1 = A)e)?/2) — A - exp(—(Aa + (1=Md)?*/2)=0
and

(210) (1 =) exp(—(Ab+ (1 — A\)e)?/2) — (1 — A)d' - exp(~(Aa + (1 — N)d)?/2) = 0.
Substitute (2.6) into (2.9) and (2.10), we have

(2.11) (v* — a®) — A+ (1= Ne)? + (Na + (1=XNd)?=0
and

(2.12) (2 =d®) = (Ab+ (1= N)e)? + (Aa+ ((1 — Nd)? = 0.
Thus we see that

(2.13) b —a? =% — 2.

On the other hand, we can simplify (2.1 1) by factoring out (1 — ) to obtain
(B —a? =+ d) + A(b=c)? - (a—d)*) =0.
Using (2.13), we thus have (b — ¢)? — (a — d)? = 0 which implies

(2.14) a+b=c+d

since (b—a)+(d—c) > 0. Combining (2.13), (2.14) and the fact that b—a >0, c—d < 0,
we obtain b = —a and d = —c. Hence we only need to prove that

(2.15) Az (1 - Ny + (1 —-¥(-Az+(1— Ay)) = (A8 + (1 — N)6,).
whefeO<:L‘<oo,0<y<ooand

(2.16) O(a) ~ B(~2) = B(6)  B(=y)+ (1 - B(y) = B(6).

Now using the isoperimetric inequality for Gaussian measures on the set (—o0, —y)U(y, o0)
enlarged by (—A(z + y), \(z + y)), we have

®(Az — (1 =Ny) + (1= 2(=z + (1= \)y)) = B(~y + Az +y)) + (1 — By = Az + 1))
2 (0 + Az +y)).

Hence (2.15) will hold if 8, + A\(z + Y) > M+ (1= N)bp,ie z+y > 61 — ;. This follows
easily from (2.16) by noting > §; and y > —6,. Hence we finished the proof,
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3 Proof of Theorem 1.

The one-dimensional result obtained in Lemma 1 can now be extended to general sym-
metrizations on R™.

LEMMA 2 Let T be a subspace of dimension n — 1 in R™,u € T+, (u,u) = 1, and S(T,u)
the 1-symmetrization about T in the direction u. If A and B¢ are open or closed convex
subsets in R™, then for 0 < A <1

(3.1) S(T, u)(AA + (1 — \)B) 2 AS(T, u)(4) + (1 — )S(T,u)(B).

Proof. Let f = S(T,u) to simplify notation and assume A, B are both open. Since f is
a l-symmetrization about T in the direction u, we have for each open subset of E that

(3.2) fBy= #(En@+TY) = |JH(,a@) 0 (@ +TH)

€T z€T
where H(u,a(z)) N (z + T*) is a line segment such that
Tosre(Hw a(@) N (@ +TH)) =7 pp72 (BN (2 +T5)).
Similar statements hold for 4, B and AA + (1 — A)B and hence by (2.2) we have
FOA+A =B N (e + TN 2A(AN(z+ T+ (1= Nf(BN(z+TH)).

Thus (3.2) now imples (3.1) for 1-symmetrizations. If A or B is closed a similar argument
works so the lemma is proved.

LEMMA 3 Let A, B be closed convex subsets of R? such that A, B® are both convex with
0 < y2(4) <1, 0 < 72(B) < 1, and assume AA + (1 — X\)B closed for 0 < A < 1. Let
f=5({0},u) where {(u,u) =1 Thenfor 0 <A <1

(33) FOA+(1=NB) 2 Af(A4) +(1 - N)f(B),
and hence
(3.4) 3L op(AA + (1 —N)B) > A&7 oya(A) + (1 - )8! 0 72(B).

REMARK If 4 is compact and B is closed then AA + (1 — X)B is easily seen to be closed
for0 <AL 1.

Proof. Since 0 < 72(A4) < 1, 0 < 72(B) < 1 we have 0 < (M + (1 - X)B). I
Ya(AA 4+ (1 = \)B) = 1, then f(A4 + (1 — X)B) = R? and (3.3) and (3.4) are obvious, so
assume 0 < y2(AA+ (1 - A)B) < L

Applying Theorem 1.6 in [2] we have a sequence of 1-symmetrizations {f; : j > 1}
defined on R? such that for each ¢ € (0,1/2) there exists R(e) > 0 such that for all closed
sets F in R? with v(F) € [¢,1 — ¢] and R > R(e) we have

(3.5) Jim i(F) (e : (a,0) S B} = A(F) N (x 2 (2,7) < B)
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where fj = fjofj—10...0 f1 and the convergence is in the Hausdorff metric. Furthermore,
the convergence in (3.5) is uniform in all closed F with € < 5(F) <1 —¢,
Now Lemma 2 implies

fiAA+ (1 =N)B) D Afi(A) + (1 — N f2(B).
and we can iterate the above set inclusion if f;(A) is convex and the complement of f; (B)
is convex. To see this, observe that A open (closed) and convex implies f1(A) is also open
(closed) and convex by Theorem 3.1 in [2]. If we use left symmetrization for B, and right
symmetrization for B¢, then fi(B°) is convex and (f1(B))° = f1(B°). Hence fi1(B°) is
still convex, so the set incusion can be iterated implying

fi(AA+ (1= A)B) 2 Af;(4) + (1 - N f;(B),
for all 7 > 1. Hence for all R > 0

Fi(AA+(1 = N)B)n{z : (z,2) < R}
(3.6) 2AM(A) N {z: (z,2) < R} + (1= Nf;(B)n{z : (z,2) < R},
and (3.5) and (3.6) combine to prove
FOA+ (1 -NB)N{z: {z,2) < R}
2Af(A)Nn{z: (z,2) KR} + (1 - N)f(B)n{z: {z,2) < R}

for all R sufficiently large. Letting R 1 oo, we have (3.3), and since f = S({0},u) this
implies (3.4) as well. Hence Lemma 3 is proven.

LEMMA 4 Let S = S(T,u) be a 2-symmetrization in R*. Let A, B be closed convex
subsets of R" such that 4, B¢ both convex with 0 < 72(4) < 1, 0 < 72(B) < 1, and
A+ (1 —=X)Bclosedfor 0 <A <1 Thenfor0< A <1

(3.7) S(AA+ (1 - A)B) 2 AS(A) + (1 - N)S(B).
Proof. f A =0o0r A = 1, (3.7) is obvious so assume 0 < A < 1. Also y,(A4+(1-A)B) =1

implies S(AA + (1 — M\)B) = R™, so (3.7) again is trivial. Hence we can assume 0 <
Tn(AA 4+ (1 = 2)B) < 1. Now

S(AA+(1-MB)= [ J(SOA+(1-NB)n(z +Th)
zeT

(3.8) = J S(OA+ (1 - NB)N(z +TH)
z€T

where 2 + T is a 2-dimensional hyperplane through z and S(AA + (1 — A)B) N (z + T+)
is a 2-dimensional half-space of (z + T*) such that

Yoy 7a (SOA+ (1= N)B)) =75 174 VA + (1~ )B).
¥y, 5470 (AA + (1= A)B) =0 (or 1), then

SAA+(1-NB)N(z+TH =6 (or z+TY),
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and hence Lemma 3 and (3.8) imply

S(A\A+ (1‘— MB)2 (JOAS(AN (@ +TH) + (1= NS(BN(z+T)).

z€T
Thus
SQAA+(1-NB) 2 [ JAS@ N (@ +TH) +(1 - A(SB) N (z +TH))
zeT
(3.9) = JOS(A) + (1 - NS(B) (e +T4)

zeT
= AS(A) + (1 = A)S(B).

Thus (3.7) holds and the lemma is proven.

LEMMA 5 Each n symmetrization in R™ can be written as the composition of (n — 1)
2-symmetrizations of R® which point in the same direction. That is, given u with (u,u) =1
there exist subspaces T7,- -, Tp-1 of dimension n — 2 such that

(3.10) S({0},u) =Sp—10Sp—2 -+ S208i,
where S; = S(Tj,u) fori=1,---,n—1.
Proof. Let ay,---,a, be an orthonormal basis of R" with «; = v and define T}

span ({ag2, +,an} — {asy1}) for i = 1,2,---n — 1. Then T3 = span {2, s, - ,Qn}
(T1 + Rai)t = span ({az2}), and by Lemma 2.2 of [2] we have

o

Sp 051 = S(T1 N Ty, u).
Thus if £ < n — 1 we assume
Sg-10-08 =85(TNTy - NTe_q,u).
Now (T3 N+~ N Tg—; + Ray )t = span {ag,  ,ax} so
Ty = span {{as," - ,an} — {ax41}} 2 (T1 0+~ N Ty + Ra) ™,
and hence by Lemma 2.2 of [2] we have
Sko(Sk—10-08)=ST N NThet1 N Thyu).

Hence
Sn—l 0« "0 Sl = S(Tl AREE ﬂTn_l,u)

= 5({0},v),
and (3.10) holds.

PROPOSITION 1 Let 7, be the canonical Gaussian measure on R” and A, B be non-
empty Borel subsets of R™ such that A and B¢ are convex. Then for 0 < A <1

(3.11) Ol oyp(AA+ (1= N)B) 2207 09,(4) + (1 = M@ 7! 07, (B).
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Proof. We can assume 0 < A <1, 0 < v,(AMA +(1 = \)B) < 1,0 < Tm(4) < 1 and
0 < 7a(B) < 1, otherwise (3.11) holds trivially.

If A and B are both closed, let 4, = AN {z : (z,2) < r}. Then A, is convex and
compact, and AA, +(1—A)B is closed. Now take r sufficiently large so that 0 < v,(4,) < 1
and let f = S({0},u) denote the n-symmetrization in the direction wu. Furthermore, we
can express f as in (3.10), so Lemma 4 implies

(3.12) S1(A4, + (1= N)B) D ASi(4,) + (1 — \)Si(B).

Using left symmetrization for B and right symmetrization for B¢ as in the proof of Lemma,
3, we see (3.12) can be iterated to obtain

S2051(A4; + (1= X)B) 2 AS3 0 51(4,) 4+ (1 — \)S; 0 S1(B).
Continuing; we obtain
(3.13) T4 +(1=M)B) 2 A\f(A) + (1 - N)f(B),
and hence that
(3.14) 27 0 yn(AA, + (1= A)B) > A& 0 9,(4,) + (1 — \)d~ o Yn(B).

Letting 7 — oo, we have (3.11) if 4 and B are closed with A, B¢ both convex.

Now assume A and B¢ are convex Borel subsets with 0 < Yn(A) < 1land 0 < 7,(B) < 1.
Fix ¢ > 0. Then by [1] and Theorem 12.3 in [7] we can obtain P. compact, convex,
and Q. closed with Q¢ convex such that P, C A, Q¢ C B and lim, g vn(P.) = v,(4),
limeo ¥2(Qc) = va(B). Hence applying (3.14) we have

&7 oya(AA+ (1= N)B) = 87 oy (AP + (1 - N)Q.)
(3.15) 2287 oy (P) + (1= )27 0 7a(Qe).

Letting € — 0 in (3.15), we obtain (3.11) and proposition 1 is proven.

Proof of Theorem 1. The proof will follow the proof of Theorem 3.3 in [2], but has
some modifications since the set A4 + (1 — A)B need not be convex.

Using the notation of Lemma 2.1 in [4] we consider the series 2 is1@i(z)Saj, z € E,
aj € E*, whete {a;,j > 1} are i.i.d, N(0,1) with respect to pand {Se; : j > 1}
is complete and orthonormal in the Hilbert space H, which generates p. Let II,(z) =
=1 2i(2)Sey, Qu(z) = z — Mu(2) and set F, = ofa; : 1 <j<n}forn>1 If
ola; : j > 1) is the minimal o-field generated by Up>1F,, then it is well known that
o(a; : j > 1) restricted to H, is the Borel subsets of H,, and that u(H,) = 1. To
simplify notation we thus assume T-I—u = F, and it is easy to see this is no loss of generality.

Thus if C is a Borel subset of E, and I¢ its indicator function, we define

Ien(z) = /E Ie(T () + 4)du® (3)

where u@ (F) = W@ (F)) for any Borel set F. Since the {aj : j > 1} are independent,
Ic, = E(I¢|F,) and hence w.p.1 and in L1 (1) we have lim,, oo Icn = Ic. Now assume
A, B Borel sets with A and B° convex in E. Then, for 0 < A < 1, we have

(3.16) {Dat-xBa > 1/4 2 MIa, > 3/4) + (1 — M{Ipn > 3/4}).




An Extension of Ehrhard’'s Theorem 299

To check (3.16) take a, b such that I .(a) > 3/4 and Ip n(b) > 3/4. Then Ia(Tla(a) +
y) =1 and Ig(T1,(b) +y) = 1 with u9 probability greater than 3/4, and hence
(3.17) Is(Tla(a) +y) - Ip(Ma(b) +y) =1 7
with u®@ probability greater than 1/4. Now

Ioat(-nB(Au + (1 = A)v) 2 La(u) - Ip(v)
regardless of A and B, and hence

Doata-npn(Aa+(1—A)b) = /IAA+(1—,\)B(Hn()\‘1 + (1= A)b) +y)du®" (y)

> / LA(Ta(a) + y) - In(TLa(b) + y)dp@ (1)
> 1/4

since (3.17) holds with x9n probability greater than 1/4. Hence (3.16) holds. Using log-
concavity of u@ as below, we can strengthen (3.16) in that 1/4 and 3/4 can all be taken
to be 1/2. However, the argument used above is valid for any measure, and is all that is
needed for (3.19) and the completion of the proof. ;

The next step of the proof is to show A, = {I4,, > 3/4} is convex in E, and Bp =
{Ip,n > 3/4} is the complement of a convex subset of E. To see this first observe that
Tan(z) = G (A —TII,.(2)), and hence for 0 < A <1 we have

Lan(Azy + (1 = Nzg) = p9 (A — Tn(Azy + (1 — Nz2))
(3.18) = 19" (M(A = Ha(21)) + (1 = A)(A — In(22)))
> (49" (A = a(2) (1 (4 = a(22)))' ™
where the equality holds since A is convex and II, is linear, and the inequality holds
since @ is Gaussian, and hence log-concave. Hence (3.18) implies A, is convex and
similarly, since B¢ is convex, {Ipc n > 1/4} is also convex in E. Now Ip,n =1 — Ipe,n, 50
B, = {Ipe,n < 1/4}, and hence B, is the complement of a convex subset of E.

Now A, and B, are both determined by z only through IL,(z), so A, and B, are
Fp-measurable with p'=(4,) = p(4,), and p!» (Bn) = p(By). Thus, since (E,p) is
linearly isomorphic to (R™,~v,) via the map z — (ai1(z),...,an(z)), applying Proposition
1 to A, and B, we have by integrating (3.16) with respect to u that

3 lo u(z - I)‘A+(1—/\)B,n(m) > 1/4)
> & o p(AA, + (1 — N)By)
(3.19) =& Louln(\A, + (1 - \)B.)
> A6~ oM (A,) + (1= N8 o T (By)
=20 o u(An) 4+ (1= N3 o u(Bn).
Letting n — oo in (3.19) we see that

@-IOH(I : I)\A—{—(l-—/\)B(E) > 1/4)
> A3 o p(z ¢ Ta(z) > 3/4)+ (1= N2 ou(z : Ip(z) > 3/4),

and hence the theorem is proven.



300 Kuelbs and Li
REFERENCES

1. R. M. Dudley, “Real Analysis and Probability,” Wadsworth, Brooks, Cole, Pacific
Grove, California (1989).

2. A. Ehrhard, Symétrisation dans I’espace de Gauss. Math. Scand. 53: 281-301 (1983).
3. A. Ehrhard, Inéqalités Isopérimétriques et intégrales de Dirchlet Gaussiens, Ann. Sci-

.

ent Ec Norm. Sup. 17 : 317-332 (1984).

4. J. Kuelbs, A strong convergence theorem for Banach space valued random variables.

Ann. Probab. 4 : 744-771 (1976).

5. S. Kwapien, A remark on the median and the expectation of convex functions of Gaus-
sian vectors, Progress in Probability, vol 35, Birkhauser, Boston.

6. M. Ledoux and M. Talagrand, “Probability in Banach Spaces,” Ergebnisse der Math-
ematik und ihrer Grenzgebiete, 3. Folge Band 23, Springer-Verlag, Berlin (1991).

7. F. A. Valentine, “Convex Sets,” McGraw-Hill Inc., New York (1964).






