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Summary. Let yx be a centered Gaussian measure on a Hilbert space H and
let By H be the centered ball of radius R>0. For acH and lim R(t)/t < ||al,
]

we give the exact asymptotics of u(Bg, -+t a) as t — oo. Also, upper and lower
bounds are given when y is defined on an arbitrary separable Banach space.
Our results range from small deviation estimates to large deviation estimates
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1 Introduction

Let (E, ||-f) be a separable Banach space and let u be a centered Gaussian
measure on E. For the closed ball Bgy={x€E:||x| SR} centered at zero, the
function u(Bg-+b) from (0, 0) x E into R' is of special interest in the theory
of Gaussian measures or processes, and has been investigated extensively in
the literature.

The aim of this paper is to describe the exact asymptotic behavior of

(LY UBrpy+t-a) as t— o
where acE is a fixed element and lim R(t)/t <|/a|. The results range from small
t—> w

deviations to large deviations. We do so for E=H (Hilbert space). Also, some
related upper and lower bounds are given for u defined on an arbitrary separable
Banach space E.

Now we turn to some of the basic questions and related references that
connect with our paper. There are three cases that are covered in the study
of (1.1) in this paper.

The first case is when the radius is a constant, ie. R(f)=R =constant. A
general result of Borell [2] implies

.1
(12) lim —7 log u(Br+1-a)=—3 |al;
[ 3andieo]
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where ||+, is the norm in the reproducing kernel Hilbert space H,=E of
(with the convent1on lall,=oco0 if a¢H,). Thus, if aeH,, then u(BR+t a) is
‘almost” exp(— |lal; t%/2). We want to make this almost more precise, and,
more important, if a¢H, we try to see how fast 1~ ? log u(Bg-+t-a) tends to
— 00 as t— o0,

The second case is when the radius is shrinking to zero, ie. hrn R()=0.

The problems of this type are more delicate and useful in general When
acH,<E, de Acosta [1] gives the sharp estimates at the log level for Gaussian
measure u on Banach space E. For Wiener measure on C[0,1] and acH,,
Grill [4] recently provides the estimates that gives the second order term (up
to a constant) at the log level. Very recently, Kuelbs et al. [9] gives the exact
estimates up to the second order term for an important dense subset of H,
when u is Wiener measure on Hilbert space. This type of estimate is related
to the problem of finding the convergence rate and constant in the functional
form of Chung’s law of the iterated logarithm.

The third case is when the radius is growing to infinity but not too fast,
ie. lim R(f)=o0 and lim R(t)/t< |a|. These estimates are in the domain of

t—> o0

t—
large deviation theory and differ from what has been done previously in that
we are able to obtain results which study the asymptotics of the probabilities
rather than the logarithm of the probabilities. Unfortunately, our results are
applicable to only a limited number of sets, and are restricted to the Hilbert
space setting, so they compete with large deviation theory in only a limited
way. They do, however, suggest more general questions of interest, which are
beyond what can be done now.

The rest of this paper is arranged as follows. In Theorem I of Sect. 2, we
give the exact asymptotics of (1.1) in the Hilbert space case. The main tool
is to analyze the inversion formula of the characteristic function with a modified
‘Saddle point method” for integrals of complex functions. This method has been
used in [12] and [9] for special types of problems. In Sect. 3, we give some
important corollaries of Theorem 1. In particular, the results related to (1.2)
and the improved large deviation estimates are discussed. We recall some basic
results about general Gaussian random vectors in Sect. 4, and in Theorem 2
we use them to give an upper and lower bound for (1.1) which are refinements
of Grill [4]. The bounds are sharp at the log level (up to some constants).
In Sect. 5, we briefly indicate an application of the results we have obtained.
In particular, we discuss the convergence rate to a point outside H , for Gaussian
samples in Hilbert space.

Throughout we write a,~b, when lim a,/b,=1 and a,~b, if there is a
constant C, 1 < C < o0, such that nTe

1/C< lim a,/b, < lim a,/b,<C

n— o

We also use C to denote various positive constants whose values might change
from line to line.




The Gaussian measure of shifted balls 145

2 Exact behavior

Let u=2(X), X= ) Ai? &, ¢ be a centered Gaussian measure on a separable
k=1
Hilbert space H with Y 4, <oo and 1,>0, non-increasing. Here {{,:n=1} are
kz1
independent N(0,1) and {e,:k=1} is a orthonormal sequence in H. Then we
have the following asymptotic estimates.

Theorem 1 For any a= ) a,ecH (ie. ), a; <o) and hm R(t)/t< l|all, we have
ast— oo, kz1 kz1

@ P(!IX—t‘a]2<R2(f))

ap (24 y)? ( Ay )2>_ 1z
+2 el
|/27‘c ( kgl A(T+249)° k; 1424,y
t2a? y 1

»exp{Rz(t) y— 3 —=f——— ) log(1+24 y)}

o L2y 2,5 ,
where y>0 is the unique solution of the following equation for t large
2 W

(1+21ky)2 + 2 1424y

kz1

(2.2) R? (t)=%+ 2y

kz1

Proof. The Laplace transform of the random variable | X —t-a|? is given by

—sljx—tal]2 \" tzaz 1 S
j‘e s|f: I 'u(dx):exp{—s L -1-+—27ka—§ Z log(1+2iks)}
‘k

H k=1 kx1

Using the inversion formula (see, e.g. Theorem 27.1 in [3]), we have for every
>0

y+ico
23) PIX—tal? SR (D) =5 | ¢*Vdo

y—ico

where s=y+io and

2 .2
I di L Y log(1+424s).

Q(S)Z —IOgS"‘RZ(t)S—"S z m"z
k kz1

kz1
Note that the function @'(s) has a zero at (y, 0) where y=y(¢) is given by
1 Clz )»
2.4 R*(t)=—+12 ko
24) O=2+C 2 q52,57 T L Thaay

Ez1 k21

Hence we take y> 0 in (2.3) to be the unique solution of (2.4) for ¢ large.
Now we rewrite (2.3) as a sum

(2.5) P(IX —t-al?<R*@)=I,+1,+1,+]1,
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where
11:515@16|>-§~,ﬁ—z/s 0o
12=%Mj>y e?9da
13:%1“3} (@O~ do
I4=_217;|d|<y‘£~2/5 P9
2
p=p0)= 1+t2k§17k%£%%+27"

ey VP
=2 (1 T2 )
k=1 kY
Note that §— oo as t — co. We will show 1, is the dominating term.

Let us rewrite Re @(s)=A(y)+B(y,0) by using log(a+ib)=log]/a®+b?
+1i arctan(b/a). Here

t2at y
s _ o1 _ e
(2.6) A =R*O)y—logy—1 ) log(1+247)= X 737
P k=1 k7
and
2 24,0 \?
- . ST
27 B(y,0) Iog<1+<y)) 4k§11og(1+(1+2m))

_(g)z 5 2t%ai Ay
v) Sy L2009 + (2% 0)? (14+24y)

Then

2.8) ,mé%em [ s
T y2lol> 8- 25

(2.9) |12|§§%ef“v> [ ePr9dg.

lai>y

Since 4 is non-increasing, we have for y=|o| >y~ %/

22,0 \A\
2100 exp{i—1 3 lo 1+(““k—))}
(2.10) p{ tL g( 1+24.7) )
_ 247 \? 2%40 \\TT
- . a5 “MV . iaddi R
sero] “Eslog(”ﬁ (i) (+(55))
by 2 24,0 \A\ !
< —~4/5 k N N ki
exp{ k§s<1+2;‘k3’>} < +(1+2/14y>)

2440 \3\7!
<Cexp{—3p7*°T}: (1+<—1_-F2%) )
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where the second inequality is by log(l1+x)=Zx/2 for 1>x>0. For y=|o|
>y B7 25 we also have

o\? 2t2a? Ay p*
2.11 —— -
@11) exp{ <v> Z (1+zzky)3+(2zko)2(1+2)~kv>}

tai Ay y* }
S A+ 207,

<exp{— B3 1(B—1-2T)}.

éexp{—ﬁ“”s

Therefore by combining (2.8), (2.7), (2.10) and (2.11), we obtain

(212) || SC-e*-exp{—3p T} exp{—p 45 }(B—1-2T))

| ‘g (1 ( 2 4))2) 1
yzlo|>yg-2/3 1 )L
2)»,40'(

+ o 2\ -1
écﬂ/“ AW ”eXp{—%ﬁl/s}”

Turning to I, and using similar estimates as in (2.10), we have for |o| >y

24,0 \?
2.13 ex {—l lo <1+(—’2) )}
( ) p » 4k§1 g 1+2/ka
2;» ')) 2 2)L [e3 -1
sen{os g (2 (-62557)
p{ 4k§5 g( 1527, 1422, 7

Ay \2 2i.0 \3\~!
coof 3 2} (52 )
p{ 2k§5(1+2zky 1524,y

2; g -1
<. 1 . _cra T
<C exp{ 21} <l—+-<1 2)%)))) .

For |o]>7v, we also have by noting that the third term in (2.7) is an increasing
function of ¢ (without the negative sign)

o\2 2t%2a? 2, y?
214 —(< i 4
@14) e"p{ (y) k; (1+2)ka)3+(2)»ka)2(1+2/1ky)}
t>ag Ay y* }
<ex — —%
= p{ 2 (420,77

=exp{~3(f—1-2T)}.
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Therefore by combining (2.9), (2.7), (2.13) and (2.14), we obtain
(2.15) LISC-etPexp{—3T}
22 2\t
exp{—1(f—1-2T)} | <1+(—4%> ) do
4

la]>y

+ o N —1
<C-e?Deexp{—1p} | <1+(_M) ) do
SCoy-etMoexp{—1p}.

Now turning to I, we have [¢/™®® — 1] <|Im & (s)| and

g 1 20,0 t“a
Im @(s)=R%(t) o —arctan ———= Y arctan ——+———¢ k
(s) ( y 2 k§1 1424y k§1 (1+22, 9 +24, 0)
(o 20,0 24,0
—(;varctan )+ kgl<1+2iky—arctan——1+21ky>

to ¥ ( tPay 1*ai >
el (A+24797 (14249 +Q240)?

by plugging in (2.4). Thus we have by using the inequality x —arctan x <x?/3,
x>0 and 1/x?—1/(x*>+y*) < y?/x*

31
%

Im &()| < %“

al3 24,7 )3
- L) 4
y k§1(1+2)»ky

_ - hey ai (2% 7)°
<1 6/5 +i 6/5 ( k ) + 6/5 . ¢2 _kNTRT
=3b 3h k; 1422,y 2 k; AL +22,9)°

[

b

3”t2 al%(zllk')))z ) ey
)Lk(l+2/lky)3 1420y

<C-p7'»
for |o] <y B~ 2/°. Hence

(2.16) I )<C.p~115 f oReP6) J o

lol<yp—2/5

Next we turn to the dominating term I,. Using the inequality x—x?/2<
log(1 + x) < x, we have from (2.7) that

- (;’) BOISBO.0)S 5 (%) 1 ~(§)) 5)

Hence by the change of variables,

L e " 2dy < { B0 g

VB <o T lol<yp-2s

l/ | <ﬂ1/1o

A

e ¥Pduxexp{3p3°}




The Gaussian measure of shifted balls 149

Hence
2 2ny
f B0 J gt [ e du~ .
lo] <y -2/ 1/[3 lul < 1710 /B
Thus
1 : : Y
2.17) Iy==—ei® | F0dgn A

2n lo <7215 2np

Combining (2.5), (2.12), {2.15), (2.16) and (2.17), we have as t —» 0

P(IX —t-a|><R*(1)

VAW
2n

= —exp{Rz(t)y— — L 2N log(1+22 y)}
I/ZTEﬁ kgl 1+2/1k'y Zkgl k

This completes the proof of the theorem by substituting § in.

~

- 2]

Remark. The asymptotic expression given in our theorem is still implicit in
terms of t and there does not seem to be an immediate explicit form. However,
with a little bit of extra work, we can obtain some useful information in many
interesting cases.

3 Corollaries

The following corollary is Borell’s result [2] on Hilbert space.
Corollary 1 If R(t)=R, 0<R<oo and acH, (ie |a|i= ) ai/A <o), then as

>0 k=1

log P(||X —t-a <R)~ —%ali-t*.
Proof. Note that from (2.2), y>0is given by

1 ¢ a2 Ay 2
3.1 RP=—4— % E. k + L
3.1 vy k§1 A (L4227 =1 1+2A4,y

Hence it follows that y=7y(t)— oo, y=0(t?) as t — oo since the two summations
on the right side of (3.1) tend to zero as t —» oo by the D.C.T. Observing that

(2}%?) )~k?’ 2
2
) z(1+2m3+ L\1a,) =° 5 7T

kz1 kz1 kz1
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for t large, we have by substituting (3.1) into (2.1)
log P(IX —t- anzng)

~ 2 aky _1_ ;
R*y—% 152472 Y log(14277)

k=1 k=1
- oa Qhy? Ay 1
=1-= : + —2 Y log(1+27y)
2.5 % (142007 k§11+2m 2%1 gl +24
t? a?
~—5 2 5 toW)
2k§11k
t? a? t?
~T E’i——?llalii
kz1 Tk

which proves Corollary 1

The next corollary gives the second order term for the above result when
the point a comes from an important dense subset of H,. This can be viewed
as a refinement of Borell’s result.

Corollary 2 If R(t)=R=constant and acSH* (ie. |S™ allf= Y af/AZ <o),
then ast— oo kzt

log(exp{3laly t*} P(IX —t-a| SR)~R- IS allps-t.

Proof. From (2.2), y >0 is given by

1 (24 7)? A
32 Zk '
G2 Z 7 T2 T 2 Th20
It is easy to see that y=y(t) > o0 as t - o0, and
(24 7)? a; . A
lim — and lim —_ =
Y_’Ookgl (1+2}k’y)2 kgl ; Y*’OOkgl 1+2;»k'))
by the D.C.T. Hence we have as t — o0
12 a@ 1S~ al g
2.5 _k 2 ~ H .
(3.3) R e k; 24y IS7 alf oty SR
Note that as t -» ©
220, 7)? Ay V2
34 2y GEAY ( i )
(34) ,Z:I J(1 422, 7)? k; 14224y
=(t%/29) Y (@/20) QA /(L +27 7)) +o()
k=1
~(£2/2y) Y, (@ /7)) +o()
k=1

=R|S " a| g t+o0(1)
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and
Y Ayl +24 =00, Y log(1+247)=o0().

kz1 kz1
Hence from Theorem 1, by substituting R in (3.2) into (2.1), we have

10g(eXp{%HaH§ t?} P(|X —t-a| <R))

tz ak Y 2
5325 xk @D N eyt ap) 1+2;bk Trai o0

kz1 k=1 k=1
2h)? tz az
e B
2)) ,fi:l W2 (420 7) k; A+ 227722 TOW
~(E2/27)- Y ai /g +o(y)

k=1

~R-[IS7 all gt

which proves the claim.
The following corollary shows that under certain conditions, we do have
an explicit asymptotic expression for P(|| X —ta| £R) as t — 0.

Corollary 3 Let a= ) a, e, be in H with Y, ai/A3 <oo and suppbse that

Ez1 k=1

|
|
|

A/ *
=0, 1
sﬂook>11+2)ck8 1

(3.5) lim Y

Then as t — oo

PUIX —tal SR)~ e — [ (1424 pt)= 172
27'CR 2ptk>1

a]% 1/2
exp{w > +tR<Z /Tz%)

k=1 k=1
Sz E
(Z B\X )

=(@RY) 'Y a2/i2=(4R>) "1 |S  alFe

where

kz1
Proof. For y — co we have
a? -3)
e I s 5w L
and
2 2
6y ¥ —1%%5% ‘}k-%/j 812 > P+ 037,

k=1
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Let now y be defined as in (2.,2) with R(t)=R. Then from (2.2) and (3.6)

A
(3.8) < kgl 4 kgl il +0(y"1)>+ 1 +k§1 1+2kikr))
Hence
(39) p 1T =QR)H (Y @/ +o()=p+o(l)
kz1

and it follows by (3.8) that

p2 t2
610 RS 8 50 T gy

1

Dividing (3.10) by 1+ pty~ 1! and using pty”*—1ast— o0, we have

A
311 R? t)= k 1
( ) ('}) p 8 2k§1 1+pty~1k§1 1+2;"ky 0( )
as t — oo. This implies y> pt for t large, and
2p?R2¢? A
(3.12) +y Y
) ST+ 20y
=2 th—— (y H+y
P P k; 1+2;ka
1 2 2pt )u
=2pR*t—1+ (!
p 4 2,; i3 ( 1+pty_1>k§11—|—2/1ky o)
_2,oR2t—1+L Z ai ! <Z % )2+o(1)
4p* S\ 4 R2(1+pty 42 o1 L+207

1
=2pR*—14+—5 ¥ i3+ o(1)

4 k=1

where we use (3.11) in the second and third equality, and (3.5) in the forth
equality. Using (3.11), log(1 +x) < x for x>0 and (3.5), we have as t— oo (since
y>pt for t large)

(3.13) 0=1 Y log(1+24,9)—% Y log(1+24 pt)
k=1 k=1
22k —pl)

=1 log<1+ sk SUAE

2,; 1+27; pt,
<(y—pt S —
=0 p)k;Hukpr

y /Atk )Lk
< o * 1
=9R? <k;1 1+2,1kpt) (k; 1+2/1ky)+°()
=o(1).
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Hence we have by (3.6), (3.7), (3.9), (3.12) and (3.13)

: t2a Y
R? k log(1+24
7= kgl 1 =+ 2}(,( M 2 kgl g( k y)

L v apy
=1+t (Z A2 L 1+2zky)

k21 kz1

)bk 1
+7 Y 152472 Y log(1+24,7)

k=1 k=1
_1_5 % 2R 3 o4
)"k Y Sp kz1

+y > 1+2)ka 3 z log(1+22, pt)+o0(1)

kz1 kz1

l—v 2 +2 R%t— Z —1 3 log(1+22 pt)+o(1).

2 k=1 k>1}‘k k=1

This provides the desired estimates for the exponential term in (2.1). The esti-
mates for the other terms in (2.1) are given in (3.4). Thus the corollary is proved.
By using Corollary 3, one can prove the following result for the finite dimen-

sional setting,
Corollary 4 If A, ..., 2,>0arereal, a,, ...,a,eR" and R(t)=R, 0 <R < o0, then

P(Z [ &—t- ak|2§R2>
K

=1

n a,% —(m+1)4 [ n 12
N(zn)_l/z‘ (z 72—) (H ;"k> CRB D2 -t 1)/2

k=1 "k k=1
tz n Cl,% < n a}%)l/z Rz n a};{} ( n ak) 1}
eXps——= 2, —+tR = — 5 -3 :
p{ 2 - }'k kgl j‘l% 2 kgl /1’? kgl /ll%

Our next two corollaries are a refinement of some large deviation results
on Hilbert space. The large deviation estimates state that as t — oo

log P (”%—a

}§R)~— inf I(x)-£2

xeBr(a)

whete Bg(a)={x: |x—a| <R} and I(x)=x|22=(1/2) ¥ x2/A.

k=1

Corollary 5 If R(t)=R-t where R is a constant and 0<R<(Y. af)'?, then as
t— o0 k=1

(3.14) P(|X—t-a|SR-)~K, g — ! [ exp{— inf I()-¢)

Br(a)
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where

1 ag -4 4 73 . )*1/2
Ko r= . _ {4201
- 1/2—7'5 <k§1 (1424, y0)? k§1( k7o)

and v, >0 satisfies

a;

(3.15) RE=2 i

kz1
Proof. In the setting here, we have from Theorem 1,

(3.16) P(HX—t~a|[2<R2-t2)
ai (22 7)? ( My )2) 12
+
l/ 2n < kgl ik(l—{nzﬂ“k’y)a kgl 1+2)‘k’))

‘exp{thzy—-l Y log(14+24,7)— > M—}
S5 S T+ 20y

where y>0 is the unique solution of the following equation for ¢ large

1 a? A
3.17 R2f2=—4¢2 k + k|
(3.17) k; (1427, 7)? k; 1+2,y

Note that from (3.17), y=y(t) is a decreasing function of ¢ by implicit differentia-
tion, and y=y(t) >, as t > oo where y,, given in (3.15), is independent of .
Hence by substituting R in (3.17) into (3.16), we have

(3.18) P(|X —t-a|*SR*-t?)

i 227 7) -172
~ [ 2 —M— 142 )
;ﬁzn( L hsae LLF2450

kz1
. 2 a; 24y Ay
eXp{l Y dra Tt L 1+2,1ky}

kz1 k21

Observing that by substituting R in (3.15) into (3.17), we have

a 44 (1+;&.k ’))0+)"k /) 1 ;"k
(3.19 2(y— k" k =+ —.
) 0=10 2 T 2aoP (12201 7 2 TH2087

Letting t — oo in (3.19) gives us

a2 4)\, 1 },
(3.20) hm t2(y—7y S A ST SR S
( o) k§1 (I+2470° 7o £=1 1+27 70
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Now

2.2 2,72 a?-22, vy
391 im £2 ( G 2hy” %)
( ) kgl (1+2;"k 7))2 k‘é—:l (1+2lk ');0)2

. 26} My +70+4 %70 7)
_ tz L k Mk o] k /0 )
zin;lo( 0= k§1 (142270 (1 +247)

. 2 )u 4'))
= hm tz N e . M
Jim (6 =7o) ,El T+ 24707

Vo
=1+ L A E—
k§1 1424, 70

From the results in [9], we have

a;- 2475

xeBr(a) E>1

Combining (3.18), (3.21) and (3.22), we obtain (3.14) and hence finish the proof.
Before we state the next corollary we need to establish the following lemma.
It is well known from results in large deviation theory.

Lemma 1 Let V be a convex open subset of H such that VnH, is non-empty
and the zero vector is not in V. Then there is a unique point b on the boundary
of V such that
(3.23) I(b)=1infI(x)=inf I (x)< c0.

xeV xeV
Corollary 6 Let U be a convex open subset of the Hilbert space H such that
UnH,=+0 and 0¢V. Take x,eH, to be the unique point on the boundary of
U such that

(3.24) ()= inf I (x).

xelU

If 1(x0)>0, and for some R>0 and acU~H,, the interior of the ball Bg(a)
is a subset of U, and x is on the boundary of Bg(a), then, as t — o

(3.25) P(X/te U)zt_ll‘exp{——inlfll(x)“ 2.

Proof. Since the interior of the ball Bg(a) is a subset of U, we have
(3.26) P(X/teU)z P(| X/t—a] <R).
Also, since acU n H,,, Proposition 5 in [5] implies

(3.27) P([IX/t—a| =R)=P(| X/t—al| <R)
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Furthermore, by the lemma inf I(x)= inf I(x), and since (3.24) holds

[[x—all <R xeBgr(a)
with the interior of Bp(a) in U and x,e By(a), we get

(3.28) I(xo)= inf I(x).

xeBgr(a)

Thus for each 6 >0 and ¢ sufficiently large

(3.29) P(X/teU)=(1—8) K, gt~ exp{—1I(xo) t*}.

Now let C={xeH,: ||x[l,<(21(x,))"/*}. Then C is compact and convex in H,
and Cn{x:||x—a| <R}=0, or we would have a contradiction to (3.28). Hence
by the Hahn-Banach theorem there exists a continuous linear functional fe H*

such that {x: f ()< f(xc)}2C and V={x: f(x)>f (x,)} 2 U. Thus

(3.30)  P(X/teU)SP(X/teV)
=P(f(X)>1 f(x0))
@m0, f(xe) Tt Vexp{ =72 (x0)/207)}

where
(3.31) oi=E(f*(X))

Now from [7, Lemma 2.1],

(3.32) o= “ S[}lp f2(x),
xflp =1

and hence

(3.33) 20% I(xg)=sup f2(x) = f *(x)
xeC

as xoeC. On the other hand, since —C=C and {x: f(x)<f(xo)} 2C we have
C{x:|f(X)Zf(x0)}. Thus sup f2(x) < f *(x,), so (3.33) implies

xeC
(3.34) f2(xo)/207) =1 (x)-
Combining (3.30) and (3.34) we thus have

P(X/teU)S(4nl(xg) > t7Vexp{—1I(x,) t*}

3
Hence the corollary is proved.

Remark. If 1(x,)=0 the conclusion of the corollary need not be true. For exam-
ple, if U={x:f(x)>0} where f is a continous linear functional with f 0, then
P(X/teU)=P(XelU)=1/2, for all t>0. If I(xq)>0 and U can be separated
from C by finitely many half spaces with C in the interior of all but one of
them which contains x, as in the proof above, then (3.25) holds as t — 0.
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4 Some upper and lower bounds in the Banach space setting

If E is a separable Banach space, we have not been able to obtain the precision
of the results given in Theorem 1. However, extending the approach of Grill
in [4], we do obtain some upper and lower bounds for translated balls which
have interesting applications to the functional form of Chung’s LIL, see, for
example, [8] and [9]. We include these results in anticipation that they will
have further uses as well. Now we need some additional notation.

Let E denote a separable Banach space with norm |+| and topological
dual E*. If X is a centered Gaussian random vector with values in E and
p=2(X), then it is well known that there is a unique Hilbert space H,SE
such that u is determined by considering the pair (E, H,) as an abstract Wiener
space (see [6]). The Hilbert space H, can be described as the completion of
the range of the mapping S: E* — E defined by the Bochner integral

(4.1) Sf=[xf()du(x) feE*

E

where the completion is in the inner product norm

(4.2) 81,8gr,= f(X)gx)du(x) fgeE™

E

Lemma 2.1 in [7] presents the details of this construction along with various
properties of the relationship between H, and E. In particular, we will use
the continuous linear maps

(4.3) Hd(x)=iotk(X)SO<k and  Q,(x)=x—1I,(x) dz1
k=1

taking E to E. In (4.3), {o;:k=1} is a sequence in E* orthonormal in I?(y)
such that {So;:k=1} is a CONS in H,cE, and when restricted to H,, II,
and Q, are orthogonal projections onto their ranges It is also well known
that dlim Q4(x)| =0 with u-probability one when u is centered Gaussian mea-

sure, and that for fe H, we can define the stochastic inner product for p almost
all xin E by

d d

@4) o f > = lim Y o400 <. S lim 3 o (x) (/)

k=1 k=1

Then (-, f>~ is N(0,¢?) whete 6> =<{f,f>,, and if f=Sh for some he E*, we
have

(4.5) %, 27 =h(x).

Finally, if fe H, the Cameron-Martin formula for the centered Gaussian measure
u takes the form

(4.6) pA+f)=§ exp{ =3 flZ—<x.f>"} dux)

A
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for Borel subsets E of B. This is well known, but a particularly nice proof

is contained in Proposition 2.1 of [1].
In this setting, the I-function of large deviations is

_(llxlz/2  xeH,
(4.7) I(x)= + 00 otherwise.
Furthermore, defining
(4.8) I(f,6)= inf I(x),
If-xll28

we see I(f,8)<oco for all feH,, the support of u in E. It is also the case that
all of the properties established for the function I{x,d) in Lemma 1 of [4],
when p is Wiener measure on C,[0, 1], have analogues for u an arbitrary cen-
tered Gaussian measure on E. In particular, if feE and 6>0, thén there is

a unique element, call it &, ;, such that |k, ;—f | <6 and

(4.9) I(f,6)y=1(hy s).

We will use these properties freely, and now we establish a lemma which provides

a slight refinement of (5) in [4].

Lemma 2 Let U(f,8)={xeE:|x—f||£6}. If feH,, 6>0, a>0, and h=h, ,,,

then for almost all xeU(f, 5)
(4.10) by~ 2=V a YRy, +o  hh),.
In particular, if «=1, then for almost all xeU(f, d)

(4.11) 6 hy~ =< by,

Proof. Take ge U(f,a)nH,. Then heU(f,ad)nH,,ag—(a—1) feU(f,xd)nH,,

and hence for 0SA<1,

(A=A h+ g —(e—1) ))eU(f, ad).
Thus for 0<A<1

(1= h+Aag—(e—1) ) =1(h),

and recalling the definition of I(+), this implies

A2 lleg—(a—1) f=hl;i+24<ag—(a—1) f—h h>,20.

Since 0 A< 1, this gives {(ag—(ax—1) f —h, h), =0, which implies

(412) <gah>yg(a—1)(x—l<fsh>ﬂ+a_1<h>h>u

foralla>0and geH,nU(/,9).
Recalling (4.3) and (4.4) we see for almost all xeE

(4.13) Jim [x— I, x| =0
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and

d

(4.14) Cohy™=lim Y () ()= lim <ITyx, b,

k=1

Since the boundary of U( f, §) has u measure zero, (4.13) implies that for almost
all xeU(f,9), that II,xeH,nU(f,9) for d sufficiently large. Hence (4.14) and
(4.12) combine to imply for almost all xeU(f, o)

<x, by~ =ah-»n§o yx, hy,zle—=1)oa 'k, +a™ < hh),.

Hence (4.10) holds and the lemma is proved.

Theorem 2 Let u be a centered Gaussian measure on E. For feH,, §>0, and
hzhf,“5

(4.15) p(x:fx—f1=9)
Sexp{—sup((@— Do '), —(e—2)a™ I} u(x: |x] £0).

and for 0<a<1

(4.16) pixs x—f | S8 Zexp{— I} p(x: [ x| (1 =2)d).
Remark. If a=1, then (4.15) implies

(4.17) ulxs [x—f | S8 Sexp{—I(hy )} u(x: x| £5)

Also it is easy to check that the sup in (4.15) is obtained at «=1 when d < || f ||

and E is a Hilbert space, since then I{ f, §) can be computed explicitly as given
in (3.22).

Proof. To proof (4.16), take 4= {x: ||x| <r}, apply the Cameron-Martin transla-
tion formula in (4.6), Jensen’s inequality, and the symmetry of {x, f >~ to obtain

(4.18) pA—f)zexp{—I(f)} u(A).
Now let h=h, ,; and applying (4.18) we obtain

uGe: |x— 1 28z p(x: [x—hl (1 —w)8)
2 exp{ — ()} p(x: x| (1 —)9)

Hence (4.16) holds.
To prove (4.15) apply the Cameron-Martin formula to obtain for «>>0 and
h:h‘i,ma that

u(x: |x—fl<é)=exp{—I(h)} § exp{—<x, b~} dp(x)
ix=(f =l €6

=exp{I(h)} { exp{—<{x+h h>~}dpu(x)

lx+m)—fli£é
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since {x+h, h>~ =<x, h>~ +21(h). Applying (4.10) implies
‘(42'0) f exp{—<x+h, B>~} du(x)

lx+my—fli =6

Sexp{—(@—1Da" ' {f,hy,—2a7 (W)} ulx: [|x—(f—h) £9),
and combining (4.19) and (4.20) yields

(421)  ple:x—f1=9)
sexp{—((@—Da ' {fih),—(@—2) o "I(R)} u(x: |x] <6)

since p(x: | x—g| o) S u(x: || x| £9) for all geE is well known. Since (4.21) holds
for all >0, we thus have (4.15) and the theorem is proved.

Remark. If a2 f]| 67", then h, ,,=0. So the sup in (4.15) is really on O<a
Slflle™n

Corollary 7 For any feH, and R(t)<(1—¢) | f| t, 1 >e>0, we have
(4.22) p(x:lx—t- flISR(@) zexp{—1*1(g)} p(x: x| =(1—¢) R(?)
and

(4.23) ulx:flx—t-f | R ()
sexp{—t*1(g,, (1+) R@)/D} u(x: x| <(1+¢) R(2)

where g, SE* satisfies
(4.24) I f—gll<eR(t)/t
Remark. Since SE* is dense in H, and the E norm satisfies

IxleEIXIHY Ix], xeH

n>
we have SE* is dense in H,. Thus g, satisfying (4.24) exists.
Proof. To prove (4.22) observe that
plx: x—t fIISR@)zZpulx: [x—t gl (1 —e) R(t)
Zexp{—t*1(g)} uix: | x| S(1—2) R(1)
by (4.16) with & =0. For (4.23) apply (4.15) with « =1 to obtain
px: x—t- fIlSR@O) = p(x: x—1-g, <(1+¢) R()

exp{—I(tg, (1 +&) R(E)} u(x: x| (1 +e) R()
<exp{—1*1(g, (1+&) RO} n(x: x| S(1+¢) R(2)).

Thus the corollary is proved.

Remark. 1f fe H, and R(t)=R, 0<R < o0, then taking g,=11,, f where

me=min{m21: | f — 1T, f | <eR/t)

o
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we have g,e SE*, and (4.22) and (4.23) combine to give
tlil{fot”'zlog plx:lx—t-fl=R)=~|flZ/2
Returning to the Hilbert space setting, we can say more since the function

I(f, 6) can be computed and g, takes a special form, Let (€)1 be an orthonormal
bases in H and 4, >0 with )* 1, <oo such that u(B)=P( Y. 1, & e,eB).

Theorom 3 Latam 3 ageneH and

429) mt:min{mzlzki (1= (RO}

for 0<e<1. Then
420 PX—t al sRO)zew{ -5 5 L pxisa-gRo)

and

@27) P(IX—t an<R(t»<exp{—2§ et

P(IX|=(1+¢&) R()

where x, is defined by

428) S RO

Proof. Let g,= ) a; e, in Corollary 7. Then the claim follows from Corollary 7,
k=1

(3.22) and (3.15).

5 An application

As mentioned in the introduction, the estimates we have in this paper can
be used to give the convergence rate and constant in the functional form of
Chung’s LIL. These only depend on the shift being in H,. Since the estimates
we have also work for the shift not in H 4 WE can formahze the problem for
points outside H .

Let X, X 1,X 2, ... be iild H-valued centered Gaussian vectors where X is
defined as in Theorem 1 with 2, =k~ 2 If g, =k~ ! and a=(a,), then

(5.1) lim | X,—2%*z Y2R12.(logn)'*.a| =R as.

n— oo
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where O0<R < oo is a constant. This follows from Borel-Cantelli Lemma and
the estimate
log P(|X—t-a| ER)~—2"5g2R™2.1t*

obtained by Theorem 1.

Remark. Strassen’s LIL asserts that the limit points of {X,/]/2logn} are

K={a:|la|,=1}. Results studying how close {X,/]/2logn} can approximate
a fixed point inside K (see [1]) and on the boundary of K (see [9]) have
been obtained. In particular, in this situation we have

lim logn|X,/]/2logn|=n/4 as.

which tells how close {X,,/‘/ﬁg?} can be to zero. On the other hand, (5.1)

can be rewritten as

lim ]/log n |IX,,/\/2 logn—234g Y2 RY2(Jogn)~ V4. g :R/lﬁ a.s.

n = 0

This tells us how closely {X «/}/ 2logn} can approximate a sequences of points
that are not in H, but which converge to zero. Of course, (5.1) is just for a
particular Gaussian measure on [, and a special point, but the general case
can be handled provided the asymptotic behavior at the log level can be calcu-
lated.
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