SOME LARGE DEVIATION RESULTS
FOR GAUSSIAN MEASURES
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1. Introduction. Let B denote a real separable Banach space with norm || - ||
and topological dual B*, and assume X is a centered B-valued Gaussian random
vector with u = £(X). If B is a Hilbert space H, then in {5] we obtained the exact
asymptotics of

P(|X — ta]| < R(2)) ‘ (11)

as t — 00, provided lim R(t)/t exists and it is strictly less than ||a||, and a is in
the support of the measure . We also provided some upper and lower bounds
for general B, which extended (slightly) the fundamental ideas in [1]. However, our
most intricate results were in the Hilbert space setting, and one of their consequences

is the following result when R(t) = tR (see Corollary 5 of [5]).
Theorem 1. Let X be an H valued centered Gaussian random vector and assume

a € H is in the support of y = L(X), a # 0, and 0 < R < ||lall. Then, as t — oo,

- ~ KoptVexp{— i I(x))
P(||X —tal| <tR) ~ K, gt exp{ i!zjgﬁ<RI\m)tJ (1.2)

where K, g 1s a given positive constant.

Remark. In [5], (1.2) was established for P(||X —ta| < tR), but since Proposition
5 in [2] implies P(||X — ta|| < tR) = P(||X —ta| < tR), (1.2) stands as stated.

In (1.2), and hereafter, we write a; ~ b; as t — oo to denote that tlim ai/by = 1.
—o00

For non-negative a; and by we will also use a; << b; to denote that tﬁ ay/by < oo,
— 00,
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and a; &~ b if a; << by and by << ay. The quantity I(z) in (1.2} is the I-function
for Gaussian measures in large deviation theory, and is given by
szl =€ Hy
I(z) = (1.3)
+00 otherwise,
where H, is the closure of SB* = { [, zf(z)du(z) : f € B*} in the inner product

norm given in S(B*) by

(S1.5q), = /E F()g(2)dn(x). (14)

We write || - ||, to denote the induced inner product norm on H,. Finally, we point
out the well known fact that the support of u is H,, the B-closure of H, in B.
Throughout we freely use many of the properties of H, and its relationship to B
and p. Lemma 2 1 of [4] provides the basic facts regarding these properties.

Of course, (1.2) is a precise large deviation result, and except for constants, it
implies that the large deviation probabilities of a ball not containing zero decay at
the same rate as those of a half-space not containing zero. A natural question to
ask is whether a similar result holds in more generality, and this is the motivating
question for all the results we establish.

Inspection of the proofs in [5] used to obtain the asymptotic result in (1.2) show
that they depend heavily on Hilbert space. Hence, except for possibly independent
coordinate centered Gaussian measures on {7, 1 < p < o0, it seems unlikely that
the precision of (1.2) can be obtained in great generality. In fact, even the #P cases,
p # 2, seems to be difficult, and they are not completely general since an arbitrary
centered Gaussian measure on £P, p # 2, need not have independent coordinates.
It is only in the £2 case where this is no loss of generality.

In Theorem 2 we obtain a general result, which can then be applied to obtain
precise large deviation probabilities for balls in 2-smooth Banach spaces. We also
include some upper and lower bounds on the rate at which balls increase to half-

space in uniformly (1 4 «)-smooth spaces and uniformly p-convex spaces.
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2. Statement of results and some definitions. Our first result is related to the
concept of a dominating point as defined in [6], and shows that every open convex
set not containing the origin has a unique dominating point whichis in SB*. To

make precise our notion of a dominating point, consider the following definition.

Definition. Let D C B be such that there exists b € 8D, the boundary of D,
satisfying
1(6) = jof I(x) = inf I(@) < o0, (2.1)
and for some f € B*
D C{z: f(z) 2 f(b)} (22)
Then b is called a dominating point for D.

What we prove regarding dominating points is contained in the following propo-
sition. If B = RY, it is a special case of the results in [6], but we are unaware of

such a result in the infinite dimensional setting.

Proposition 1. Let D be an open convex subset of B such that D N H, is non-
empty, and assume 0 ¢ D. Then there exists a unique point.b on the boundary of

D and f € B* such that (2.1) holds, b € SB*, and (2.2) improves to
D C{z: f(z) > f(b)} (2.3)

Hence b is a unique dominating point for D, and if b 0, then there exists f € B*
such that both b = Sf and (2.3) holds.

The abstract result we prove requires the following definition.

Definition. Let D be a convex open subset of B with 0 ¢ D, and assume & is the
unique dominating point of D. If A # 0, let & > 0 and assume A = Sf where f € B*
is such that D C {z : f(z) > f(h)}. Then we say D contains slices whose diameters
near h dominate the power function s'/(1+®) if there exists a € B, 6§ > 0, § > 0 such
that f(a) > f(h), andfor zo =a—h,0< s < 6, and M, = {z: f(z) = sf(zo)} we
have

M,N (D —h) D {y+szo:y e Mo,|yll < Bs/CT}. (2.4)
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If the dominating point of D is zero, then we say D contains slices whose diameters
near 0 dominate the power function /(1) if there exists f € B*, a € B, § > 0,
B > 0 such that D C {z : f(z) > 0}, and (2.4) holds with zo =a and A = 0.

Given the above definition, we can now formulate our first theorem.

Theorem 2. Let D be an open convex set in B such that D OF” £ $,0¢ D, and
assume h is the unique dominating point of D. Let o > 0, and assume D contains
slices whose diameters near h dominate the power function s1/(1+®) Then,ifa > 1,

we have as t — oo that

P(X ctD) = ¢! exp{—tZHhHi/Z}‘

Remark. If 0 ¢ D, but 0 € D, then 0 is the unique dominating point of D.
Furthermore, by [8, p. 38], we have for all z € D, that the ray L(0,z) = {tz :
0 <t <1} C D, and hence tD increases as t increases. Thus when D N H, # ¢,
the probability P(X € tD) increases to a strictly positive constant as ¢ / co. In
addition, since D C {z : f(z) > 0} for some f € B* by Proposition 1, we see
p(tD) < %, and it is natural to examine how fast the convergence happens. In
order to describe these results, we introduce some further terminology regarding

the geometry of Banach spaces.

Definition. Let B denote a Banach space with norm || - ||. Then the modulus of

convexity of B with respect to || - || is the function defined for 0 <e < 2 by

sm@=int{1- 2 o<l < 1o -z ) @)

The modulus of smoothness of B with respect to || - || is defined for 0 <t < oo by

1
pa) = swp {3+l +lo— -} (26)
flzll=1,llyli=1
Then, a Banach space with norm || - || is uniformly (1 + a)-smooth, 0 < a <1, if

for some C < oo and all ¢ € [0, 00) the modulus of smoothness satisfies

pu(t) < Cl+. 27)
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We also say the Banach space B is uniformly p-convex, 2 < p < o0, if for some

B >0 and all ¢ in [0,2] the modulus of convexity satisfies
65(e) > fer. (28)

In Theorem 2.4 of [3] it is shown that if 0 < a < 1, then B is uniformly

(1 + a)-smooth with respect to || - || iff there exists a ' < oo such that
Iz + 9"+ llz =yl <2l + Cly| e (29)

for all z,y € B. The constant C in (2.9) is not the same as that in (2.7), but we

only use (2.9) in our proofs, and hence there will be no confusion in this notation.

Our next result is an application of Theorem 2, which extends Theorem 1 balls
in uniformly 2-smooth spaces. However, here we do not have the constant K, g as

in (1.2) of Theorem 1.

Theorem 3. Let X be a centered Gaussian random vector with values in a Banach
space B which is 2-smooth with respect to the norm | - ||. Furthermore, assume

a€B,0<R<]all,and H,N{z: ||z —a|]| < R} # ¢. Then, as t — oo,
P(|X —ta|| < tR) ~t *exp {— | inﬁ Rl(a:)tz} : (2.10)
r—all<

If R = ||af in Theorem 3, and D = {z : ||lz — a|| < |||}, or more generally, if
D is open, convex, and 0 ¢ D, but 0 € D, then u(tD) / to a constant less than or
equal to 1/2 (see the remark following Theorem 2). Our next result considers the

rate at which this happens.

Theorem 4. Let X be a centered Gaussian random vector with values in B, and
assume D is an open convex subset of B such that 0 ¢ D, 0 € D, and DN F,L # ¢
Let o« > 0, and assume D contains slices whose diameters near 0 dominate the

power function s'/(1+®) Then P(X €tD)< f,and ast — oo

1
5~ P(X etD) <<t (2.11)
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Corollary 1. f D = {2 : ||z —al| < R} where R = |ja}} >0, DNH, # ¢, and B
is uniformly (1 + &)-smooth with respect to the norm || ||, then P(X € tD) < L
and as t — oo

1
5~ P(X etD) << t™*, (2.12)

Our final result obtains a lower bound for these probabilities in uniformly p-

convex spaces, 2 < p < 00,

Theorem 5 Let B be a uniformly p-convex Banach space with respect to the
norm || ||, and assume D = {z : ||z —a|| < R} where R = ||a|| > O and DNH, # ¢
Then P(X €tD)< ; andast — oo

% — P(X €tD) >> (P71 (2.13)

Remark ILet B = 4% or LY If 1 < ¢ < 2, then B is uniformly 2-convex and
g-smooth whereas if 2 < ¢ < oo, then B is uniformly 2-smooth and g-convex. In
particular, Hilbert space is 2-smooth and 2-convex, so in this setting (2.12) and
{2.13) combine to yield

1
5~ p(tD)y met 1 (2.14)

Here D is as in Corollary 1 and Theorem 5, and the following example in £¢ shows

that (2.12) and (2.13) are, up to constants, best possible in many instances.

Example. Let B = /7 with canonical basis {e; : 7 > 1} and take
{g; : 7 > 1} independent centered Gaussian random variables such that X =
Z gje; is £7 valued. Let 1 < ¢ < oo, and take zg = re;. Then, as t — oo,
i>1
P| X —tzof| < tr)
=P | D lgil? < (tr)7 = g1 — tr|?
iZ2

/2,

=[P (Slelz @) - )| ap, )

22
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+ei(t) (2.15)
1 /2, 1 '
—s= | P [Swr) =i —lu-up | ap )
0 722

+ () — ea(?)

where € (¢) and €;(¢) are non-negative and ; (t)+ex(t) = O(e_tl“) [0 <u<t/?r,
then as ¢t — oo the mean value theorem implies |(¢7)? — |u —#r|?| ~ g(#7)7 1u. Hence
it |27 = E;’Z2 lg;]? and

t/2y

Jo= [ P> Gy = fu - ey IR, ),

then for sufficiently large ¢t we have
t1/27
[ P21 > oyt wpdp, @ < g
Jo
t1/21

< /0 P(IZ]l > (q(47)" " uf2) /9)dPy, (u),

Using the change of variable v = t{471)y as at the end of the proof of Lemma 3.3,

We see

Hence by (2.15) we have
3= P(IX —tao|| < tr) m¢=(a7D (2.16)

When 1 < ¢ < 2, then £? is g-smooth, so (2.16) shows (2.12) is best possible.
However, since £7 is 2-convex when 1 < ¢ < 2 we see (2 13) yields a lower bound
which is sometimes too small. On the other hand, if 2 < ¢ < oo, then £7 is
g-convex and 2-smooth, so (2.16) shows that the lower bound in (2.13) is best
possible while the upper bound in (2.12) is sometimes too large. A similar example
and computation in £9, 1 < ¢ < 2, shows Theorem 3 does not hold in uniformly

(1 + a)-smoooth spaces when 0 < a < 1.
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3. Proof of Proposition 1 and a useful lemma. The proof of Proposition 1

will proceed with several lemmas

Lemma 3.1. Under the conditions of Proposition 1, there exists a unique b € 0D

such that (2.1) holds.

Proof Since DN H, # ¢ and D is open we have D N H, # ¢. Let A denote
the H,-closure of D N H,,. Then A is a closed, non-empty, convex subset of H,, so
A has a unique element b of minimal H, norm, and A C D n H, where D is the
B-closure of D. Thus b € D N H,, satisfies I(b) = 11161% I(z), and b is unique in D.

If 5= 0, then 0 ¢ D and b a limit point in the B-norm of {z;} € D implies
b€ 8D. Furthermore, (2.1) is trivial in this case,

Hence assume b # 0. If b € D, then D open implies there exists a A € (0,1)
such that Ab € D. Thus

inf) I(z) < NI(b) < I(b) (3.1)

which violates I(b) = zlglg I(z). Thus again b € 0D, and it now remains to show
I(b) = inf I(z) when b # 0.

Tozscgify this let a € (ODYNH,,d € DNH,, and let L(a,d) = {ta+ (1 —t)d:
0 <t <1} Then L(a,d) C DN H, by [8, p. 38], and since I{z) is convex on H,

we have
. 2 < mi ”
yonf | I(z) < min(I(a), I(d))
Thus aiérng I(a) > Illél];)[(ft), which implies zngfﬁ[(x) = 7:11€1fD I(z). Hence (2.1) holds

and the lemma is proved.

Lemma 3.2. Under the conditions of Proposition 1, the unique point b in Lemma
3.1is in SB* and (2.3) holds. Furthermore, if b # 0, there exists f € B* such that
both b = Sf and (2.3) holds.

Proof If b = 0, then b € SB*. Furtheimore since D is open and 0 ¢ D, the
Hahn-Banach separation theorem given in [8, p. 64] implies there exists non-zero
f € B* such that D C {z: f(z) > f(b) = 0}. Now D open implies D is a subset of
the interior of {z : f(z) > 0}, but thisis {z : f(z) > 0}. Hence (2.3) holds as well.
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Now assume b # 0, so I(b) > 0, and define
C={zeH,: |l < (20(n))"*}.

Then it is well known that C is compact and, of course, convex in B. We also have
DN C = ¢, since p€ DNC and D open implies Ap € D for some A € (0,1). Now
I(p) < I(b) for p € C, and hence I(Ap) < I(b) which contradicts (2.1) if Ap € D.
Thus D N C = ¢, and since b € C is the unique point in 8D such that (2.1) holds
it follows that

DNnC={b}.

Applying the Hahn-Banach separation theorem again, we obtain f € B*, f # 0,

such that for some o

sup fz) S e < int f(z). \ (32)

Since 0 € C we have o > 0, and since D is open with D C {f(z) > «} we have D a
subset of the interior of {z : f(z) > @}, but thisis {z : f(z) > a}. Thus f(z) >0
for all z € D and since D N H, # ¢ with D open we see

of = /sz(x)dp(z) > 0.

Now by Lemma 2.1 of [4] we have

sup f(z) = (2I(b))1/20f ‘
zeC

Hence « is strictly positive, and by rescaling f, if necessary, we assume a? = 2I(b).
Then (3.2) and € N D = {b} implies

sup f(z) = f(b) = inf f(z). (3.3)

zeC zeD
Hence f(b) > 0 and (3.3) implies D C {z : f(z) > f(b)}. Hence (2.2) holds, and

since D is open, D is a subset of {z : f(z) > f(b)}, the interior of {z : f(z) > f(b)}.
Hence (2.3) holds, and it remains to show b = S'f.
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Let g = Sf. Since (z,¢), = f(z)for all z € H,,, the Cauchy-Schwarz inequality
implies :
f(z) = (g,0)n < ISFllulllle = 2 llu(2I(5))" /2
because ||Sf||2 = [5 f2(z)du(z) = 21(b). Thus

0< f(b) = Slelg f(z) < 2I(b), (8.4)

but since C = {z € H, : ||z||, < (2I(b))*/?} with ||Sf|, = (2I(b))/? we actually
have
sup f(z) = ||Sf||u(21(5))"/? = 21(). (35)
zeC

Combining (3 4) and (3.5) we thus see
F(b) = 21(b), (3.6)

and we claim b=g¢ = Sf.
This follows since the above implies that 0 < f(b) = (g,b), = [[b]|2, but
equality holding in Cauchy-Schwarz implies ¢ = Ab, and A = 1 is now obvious.

Hence b = ¢ = Sf and Lemma 3.2 is proven.

Combining Lemmas 3.1 and 3.2, Proposition 1 is established. Hence we turn

to the proof of a useful lemma.

Lemma 3.3. Let X be a centered real-valued Gaussian vector, and X, a centered
Gaussian random vector with values in B If X; and X, are independent and

non-degenerate, then for 4> 0,6 >0, as t — oo

1
E—P(OSXI Scltl/z,i1X2||SCztﬁXle)%t-ﬂ/e, (37)

where ¢; and ¢, are positive constants.

Proof Since X, is non-degenerate, o> = E(X?) > 0. Hence independence of X,

and X, imply
P(0 < Xy < ert' 2|1 X5 < ext?ad)
t1/2

/ P(IXs ] > est*u"))dPx, ()

0

% — Ot % exp{—c?t/2a*}) — Qq
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where

cltll2
Q: :/(; P(||X5]| > eat?u®)dPx, (u).

Using the change of variable v = t#/%, we have by the dominated convergence
theorem that as ¢ — oo '

1 121124819

Q= P(IX]| > e®)et" /057 g,
ma 0

~ t_ﬁ/'g/ P(|| X2 > e20%)dv/V2ma?.
0

Here, of course, the dominating function is P(||X2]| > cpv?), which is integrable as

| X2 || has exponential moments. Hence (3.7) holds, and Lemma 3.3 is established.

4. Proof of Theorem 2. Since 0 ¢ D, Proposition 1 implies the unique dominating
point h of D is non-zero. In addition, k € D and for some f € B* we have h = §f
and D C {z: f(z) > f(h)}. Thus

P(X €tD) < P(f(X) > tf(h)) =t exp{~¢*f*(R)/2E(f*(X)))}  (41)
with E(f*(X)) = f(h) = ||h||2. Hence we have as t — oo that
P(X €tD) << t™* exp{—t*|[h[%/2}, (4.2)

and it suffices to prove a comparable lower bound for P(X € tD)

Applying the Cameron-Martin formula we obtain

P(X €tD)=P(X eth+tD —h))
(4.3)

— exp{—£2[[h][2/2} / ) du(),
H(D~h)

so it suffices to prove that for & > 1, as t — oo,

/ e D dp(z) >> 71 (4.4)
t(D—h)



262 KUELBS and LI

Since D contains slices whose diameter near A = Sf dominate the power func-
tion s1/(1+®) it follows that there exist a € B, 6 > 0, § > 0'such that f(a) > f(h)

and for zp =a —h
#D—h) 2 {z=w+rzo:we My,0 < <16, ||w]| < pro/(F+e)1/(+e)y (4.4

where
M, ={z: f(z) =rf(zo)}  (r20)
That is, (4.4) follows by rescaling (2.4), since for r = st, 0 <5 < 6
M, (D — k) = My (D — b)
=t(M,N (D —h))
D {t(y + sz0) : y € Mo; |Jyl| < ps/0F} (4.5)
= {wtrao: = =y € M, fwft] < (7))

={w+rzg:w € Mg, |lw|| < ﬁta/(1+a)rl/(1+a)}“

Furthermore, if 7¢(z) = f(z)/f(z0o), then since z — 7(z)zo € My and the repre-

sentation £ = w + rzy for w € Mp is unique, (4.4) implies

HD—h)2
{z =(z —mp(@)zo) +75(x)20 : 0 < mp(z) <9, (4.6)

Iz = (Yool < B+ ()10}
Hence we have
4D ) 2= {2 ERIBIE = my(@ol > 51210+ @)+ | @)
where

Vi = {x 10 < 7p(e) <6, ||z — f(m)h/{lh“i” < gta/(1+a) (ﬂf(x))l/(l"'“)} )
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It ||h/||R]|2 — 2o/ f(z0)|l = O the second term in the right hand side of (4.7) is empty,

so assume the contrary. Thus, since f(z) > 0 on D — h, we have

[ 0@z [ IO - uta (1) 520 (48)
t(D—h)

Vi

where
(1to)/a

A= (BEIB/BIE = 20/ 1(z0) I F(20)) /O +) 1)

Now u(z : |f(z)| > At) decays exponentially fast as t — oo, so it suffices to show
/ e @ du(z) >> } (4.9)
v, t
Letting v = B/(2(f(20))!/(+)), we have for large ¢ that
Vi {o: 0< f(e) < 07, x — FB/AIR] < 7 /0F 9 f()) ), (410)

and since f(z) and z — %h are independent on B with respect to p;, we have
w

$1/2 —u"’/2<72

ey >/ et (1 — PG| > e/ Aad 1/(1+a) €
[ S dute) 2 [ 1= PG > 0

where £(G) is the p-distribution of z — f(z)h/||A|l% and 0® = E(f*(X)) = ||A||2.
Thusfort - ocoand a>1

du (4.11)

1 —(1—a)
/ e @ du(z) > / e " pduy >> >> ¢!
Vi —
where
e~u2/2r72
-  inf (1wp Gl > ~¢o/(He), 1/(1+a) ) e 7
p= i (UGl >~ u ) Vi
6_1 202
> (1 - PG| >
2 ( (el ’Y))W
>0
since v > 0. Hence Theorem 2 is proved.
5. Proof of Theorem 3. If dim(H,) = 1, the result is trivial, so assume

dim(H,) > 2. Let D = {z : ||z — a| < R}, and assume A is the unique domi-
nating point of D. Then 2 € 8D, and since 0 € D, we have h # 0. Hence by
Proposition 1 there exists f € B* such that &~ = Sf and D C {z: f(z) > f(h)}
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Letting ©o = a— h and M, = {z : f(z) = sf(2¢)} for 0:< 5 < oo, we then have

D—-hC{z: f(z)> f(0)}; (5.1)

and D — h is the open ball of radius R = |lzg|| centered at zp. Furthermore,

0 € 9(D — h), and we easily see

It

llzo = m]|

nf lell = R (5.2)

Thus the closest point in My to zg is the zero vector, and we define the distance

from a point p to M, by
d(p. M) = it o~ (53)
Hence, since egch m € M, is of the form szq +m for m € My, we have
d(p, Ms) = d(p — szo, Mo). (54)
In particular, from (5.2) if s,t > 0, then (5.4) implies
d(tzo, Ms) = d(|t — s|zo, Mp) = |t — s|R (5.5)

Now take y € My such that ||szg + y — zo|| = R Then szo + y is on the
boundary of D — h and 0 < s < 2. Furthermore, since y € My, ¢ € M; we have
szg —y € M,, and the above implies

lsz0 — y — 20|l 2 d(szo — y, M1) (56)
= d(szo — y — 0, Mp)
=d((s — 1)ze, Mp)
—1-sR

Letting x = sz — zg and y = y we have ||z +y|| = R and ||z — y|| > |1 — 5| R under

the above assumptions. Hence since B is uniformly 2-smooth, (2.9) implies

R +((1-)R)* < 2((1 - s)R)* + Cliy|l*
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Thus for such y € My we have
lyll > (CT'R?*(2s — s%))'/*
Hence for 82 = C~1R? and 0 < s < 1 the above implies
lyll > Bs'/2, (5.7)
and consequently
M0 (D= h) 2 {y +sz0:y € My, ||y|| < Bs'/*}. (5.8)

Indeed, if (5.8) fails, then there exists y such that |jy|| < 8s'/? and y + sz ¢
M, 0 (D — h) for some s € (0,1] and % = C~'R? Hence y + szo € M, but is
outside the ball D — h of radius R Thus

I(y +s20) — 20l 2 R,

so for some A € (0,1] we have ||Ay + szq — z5]| = R Now the above argument
applied to Ay implies
Dyl > gs'’?

with 0 < A <1 This contradicts ||yl| < Bs'/2. Hence (5.8) holds and D contains
slices whose diameters near & dominate the power function s/2. Thus, Theorem 2
applies and yields (2.10) since by Proposition 1

Rl2 = inf |z 5.9

A = nt el (59
6. Proof of Theorem 4 and Corollary 1 First we observe that 0 is the unique
dominating point for D. Since D contains slices whose diameters near zero dominate
the power function s!/(1+®) there exists f € B*, a € B, § > 0, 8 > 0 such that
D C{z: f(z) >0}, f(a) >0, and for 2o = a, 0 < 5 < § we have

Ms;nD 2 {y+szo:ye M,|y| < ﬁsl/(1+a)})
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where
M, = {o: f(z) = sf(z0)}

Hence by 1escaling as in the proof of Theorem 2 we have
tDD{z=w+rzo:wE Mg, 0 < r <46, |lwll < ﬂta/(1+a)r‘1/(1+°‘)} (6.1)

Again, since z — np(z)ze € Mo and the representation ¢ = w + r%o for w € My is

unique, (6.1) and the argument used in Theorem 2 implies

tD D {z = (z — mp(z)zo) + 7)o : 0 < ns(z) <16, (6.2)

o — mp(o)aa] € BTOH ()10}

S Vim {o @l = ms(mel > S0y )]V
where g = Sf and
o= o0 <my(e) <t = S lol < G0/ (ry(a 0}

Now g = Sf # 0 since D NH,#¢and DC{z: f(z)> 0} implies f(g) = Hg“i =
[ f2(z)dp(z) > 0. Hence V, is well defined, and for t sufficiently large

vi2 {10 fla) <07 e = fdo/ ol < O D)

Also, f(z) and = — f(z)g/|lgll% are independent, so by Lemma 33,ast — o0

1 _

vy << (6.4)
Furthermore, the u-measure of the set

‘ B o
{z: | f(@)g/\lgll} — ms(z)oll > §fa/1+ (@)}

is zero, or at least decays exponentially fast, so combining (6.2), (6.4), we get

1
5 — (D) << 17,
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and Theorem 4 is proved.

Proof of Corollary 1. As in Theorem 4, 0 is the unique dominating point of D
and there exists f € B* such that D C {z : f(z) > 0}. Since DNH, # ¢ and D
is an open ball, it suffices, as in the proof of Theorem 3, to show D contains slices
whose diameter near zero dominate the power function s!/1+e,

To do this let g = a and M, = {z : f(z) = sf(zy)} for s > 0. Then
DC{z: f(z) >0} and D = {z : ||z — zo|| < R} where R = ||a]|, so the closest
point to zo in My is the zero vector. Repeating the argument from (5.3)~(5.6) and

using B is uniformly (1 + «)-smooth with a > 0, (2.9) implies
R4+ (11— s|R)H <2(|L - s|R)F 4 Oy He (6.5)

for y € My such that ||szo + y — zo|| = R and 0 < s < 2. Thus for such y € My we

have

1

lyll > (CTTRIT2(1 — 1 — s+ s, (6.6)

and for (28)1+®) = 1RO+ and 0 < s < 6, § > 0 sufficiently small, the mean
value theorem implies

lyll = BsTaT 6.7)
Hence, arguing as in the proof of Theorem 3, we have
M0 D 2 {y+szo:y € M, llyll < fé’sl/(l—HY)}v (6.8)

and (6.8) implies D contains slices whose diameters near 0 dominate the power

function s'/0%%) Thus Theorem 4 implies Corollary 1 holds.

7. Proof of Theorem 5. As in Theorem 4 and Corollary 1, 0 is the unique
dominating point of D = {2 : ||z — a|| < R} where R = ||a|. Hence there exists
f € B*suchthat D C {z : f(z) > 0} and since DNH, # ¢ we also have g = Sf # 0
with f(g) > 0.

To verify (2.13) first observe that as t — oo we easily have

p(tD) S ptD N {z: 0 < f(2) St72)) + p(e : f(z) > 11/7) (7.1)
=putD N0 {z:0 < f(z) <2} 4+ o(t77).
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Letting 7o = a and M, = {z : f(z) = sf(z0)} for s 2 0, we define

A, = {y € My : ||szo +y — tzo]| LR}, (7.2)

and
N(z) = inf, e~ ml = d(e, M) (7.3)
Then N(szo) = [t — 3| lzo|| = [t — s|R, and the following lemma is a minor pertur-

bation of a result in [7].

Lemma 7.1. fye€ A, and 0 < s < t4/2 then

[yl < (%)w tR (1 - ﬁiﬁ—"))l/p (7.4)

where 8 > 0 is such that ég(e) > fe” and 6p(€) is the modulus of convexity for B.
Proof Takey € A, and let 21 =y + sxo, 22 = $To. Then
ll(z1 + 22)/2 — tzoll 2 N(szo) (7.5)

by definition of N(-) and that y € My (since (5.4) holds). Tet Q1 = (21 — tzo)/1R,
Qs = (22 — tzo)/tR. Then Q1] < 1, [|Q2]] < 1 since y € A, and [|Q1 — Q|| =
llz1 — 22| /tR = |ly||/tR. Thus by definition of 8p(e)
B(llyll /AR < sp(jlyll/tR) < 1—1(Q1 + Q2)/2]
=1 |l(z1 +22)/2 — tzo|| /(tR)
< 1-— N(szo)/tR
by (7.5). Hence the lemma is proved.
I @ is a Gaussian vector with p = L(G) we write G = G1 + G2 where G =
f(Gzo/f(zo) and Gz = G~ G1. Then G5 € My, and by Lemma 7.1

u(tD N {z:0 < f(z) <77} (76)
_ PG + Gs — trol| IR0 < F(G) < 17
1/p
< PO< F(G) < |Gall < (%) ER(1 - N(G)/tR)'7)

<ILi+J;
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where

1/p
L= PO (6) S t416 - (@ololil < 5t (5) (- M@ eryse),

|

Jo=P(0 < f(G) <t f(@)g/llgl2 - G1|| > 1R (%)l/p (1= N(G1)/tR)'/7),
and g = Sf # 0. Since G1 = f(G)zo/f(z0),
N(G:) = d(G1, My)
= [t = f(G)/f(z0)IR,
and hence
1= N(G1)/tR = |{(G)|/(tf(z0))
when 0 < f(G) < t'/2. Thus, since f(G) and G ~ f(G)g/|lg||2 are independent, we
have from Lemma 3.3 that as t — co

% — It ~ t~(p—1)‘

Combining (7.1), (7.6), and that J; converges to zero exponentially fast, we now

have as t — oo that
L~ u(tD) >} — I, — oft)

r (1)

Hence Theorem 5 holds.
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