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We establish a precise link between the small ball problem for a Gaussian
measure u on a separable Banach space and the metric entropy of the unit ball of
the Hilbert space H, generating u. This link allows us to compute small ball
probabilities from metric entropy results, and vice versa. < 1993 Academic Press, Inc.

1. INTRODUCTION

Let u denote a centered Gaussian measure on a real separable Banach
space B with norm ||| and dual B* If K is the unit ball of the Hilbert
space H, which generates p, then it is well known that

lim r2logu(x: x| =1)=—(26%) ",

= %

where

o’= sup sup fix)= sup [ fx)du(x),

Ifge<sl xek iflges *B
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and hence the distribution of the norm at infinity is, at the logarithmic
level, a simple function of g2 The small ball problem studies this
distribution near zero, namely, the behavior of

log u(x: x| <&)= — (&) as ¢—0,

and here the behavior of ¢(¢) depends on much more than the single
parameter o2 Indeed, the complexity of ¢(e) is well known, and there are
only a few Gaussian measures for which ¢(¢) has been determined com-
pletely as ¢ = 0. The point of this paper is to link the behavior of ¢(e) to
the metric entropy of K. Hence as a parallel to the large ball behavior
determined by the simple characteristic of K given by &7, the behavior of
#(e) is governed by the more subtle metric entropy. This is a connection
which is rather simple, but it links two delicate topics in a useful way. That
is, once this link is obtained, then metric entropy results regarding K will
yield information regarding ¢(¢). Conversely, in instances when we know
the behavior of ¢(¢), we can establish some non-trivial and sometimes new
results about the metric entropy of the various sets which appear as K. We
include a sample of these applications in Section 5, but our primary
results are Theorem | and 2 below. In Theorem 3, we show the somewhat
surprising fact that in many instances randomly centered balls can cover
(1-48)K, 0 < <1, as efficiently as those placed in the best possible fashion
required to compute metric entropy. A result related to Theorem 3
appeared carlier in [10].

The small ball problem for the standard Brownian sheet has recently
been solved in [237]. Combined with Theorem 1 this yields an interesting
result about the set W', of [24, Theorems 1.3 and 1.4]. We also
mention the interesting partial result in [9] which was one of the starting
points of this work.

If pis a centered Gaussian measure on B, then it is well known that
there is a unique Hilbert space H,< B such that u is determined by
considering the pair (B, H,) as an abstract Wiener space (see (12]). For
example, if B=C[0, 1] and u is Wiener measure, then the unit bail of H,
is

K= {f(t)=£:f’(s) ds,0< <1 ;Ll ) ds < 1}, (1.1)

with the inner product norm given by

i=([irera) e,
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In general, H, can be described as the completion of the range of the
mapping S: B* — B defined via the Bochner integral

Sf=| W (x) dux).  fe B,

and the completion is in the inner product norm
(S, 58>, =] f(x)glx)du(x)  f geB"

Lemma 2.1 in [15] presents the details of this construction along with
various properties of the relationship between H, and B, but the most
important for us at this point is that the unit ball X of H, is always
compact in the B-topology. Hence K has finite metric entropy.

To be precise we recall that if (E, d) is any metric space and A4 is a
compact subset of (E, d), then the d-metric entropy of A is denoted by
H(e, A)=log N(g, A), where

N(g, A)=min {n; 1:3a,, .., a,€ A such that U Bg(a,)QA},

=1
and B,(a)= {x:d(x, a)<e} is the open ball of radius ¢ centered at a.
To state our results we use the notation f(x)=x g(x) as x - a if

0< lim f(x)/g(x) < lim f(x)/g(x) < 0.

X = da

X —=a

and we write f(x)=<(g(x) as x—a if Tim, , f(x)/g(x) < oc. Throughout
the paper Lx =max(log, x, 1), and all logarithms are natural logarithms.

The authors thank Alex de Acosta for his comments and interest in their
results. We also thank Carl de Boor and Yuly Makovoz for their help
regarding references to various metric entropy papers.

2. STATEMENT OF THEOREMS

Since the support of a centered Gaussian measure y on B is the closure
of H,in B, the behavior of u(x : ||x|| < &) is well understood if dim H, < cc.
This is the case since dim H, =d < oo easily implies

ulx o lixll <e)=~e? as ¢—0

and, if N(g, K) denotes the minimal number of open g-balls in B which
cover K, we also have

N(g, K)~e™ ¢ as £—0.
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Hence for the remainder of the paper we assume dim H,= cc, but the
reader should note that both Theorem 1 and Theorem 2 hold trivially when
dim H, < oo. Also, the assumption on f(e) in Theorem 3 is seen to require
that dim H,=co, but the proof of Theorem 3 easily shows that when
dim A, <o a similar result can be obtained with f(¢)=1logl/¢ and

glx)=e"

THEOREM 1. Let u be a centered Gaussian measure on a real separable
Banach space B and let

log u(B.(0)) = —¢(e), (2.1)

where B,(h)= {xe B:|\x—h| <e&}. If f(1/x) is regularly varying at infinity
with strictly positive finite constants ¢,, ¢, such that

o) fle)<dle) <y f(e) (22)
Sfor £>0 small and
jle)=e(de, f(e)) 72, (2.3)
then
H(e, K)=f(gle)) as e-0 (2.4)
provided
glje))=e as e—0. (2.5)

Remarks. (I} Since u(B,(0)) is continuous in ¢ with lim, _, , #(B,.(0)) =0,
we have from (2.2) that lim, _, , f(g) = + 0. Hence, since f{1/x) is assumed
to be regularly varying at infinity, we have as ¢ — 0 that

fle)=¢e"J(e ), (2.6)

where « 20 and J(-) is slowly varying at infinity. If « is strictly positive,
then by [21, p. 23], f(¢) can be assumed to be strictly increasing as ¢ — 0,
and hence j(¢) is strictly decreasing as ¢ — 0. Thus the inverse of j(&) exists,
and we can take g to be the standard inverse of j. For example, if f(e) is
as in (2.6) with J slowly varying, monotonic, and such that J{x) =~ J(x?) for
each p>0 as x — o0, then

Je)=e@* 22 (4e, 0 (1/e)) V2 (2.7)
Hence if

ge) =813+ M (1/e) 12+, (28)
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then the conditions imposed on J(-) imply
g(je))~e as &—0. (2.9)
Thus (2.4) implies
H(e, K)o e 222 (1/g)> 2+ as e—0. (2.10)
(IT) The most prevalent form for f(¢) is
fle)=¢"*(log 1/¢)?, (2.11)

where >0 and ffe (— o0, + o), and hence from the above as ¢ -0 we
have that

H(e, K)~ e~ 22+ *)(log 1/g)H/ 2+, (2.12)

When =0 in (2.11), a one-sided estimate of (2.12) was obtained in [9].

(ITI) Perhaps it should be pointed out that the function f(g) is used
in Theorem 1 because it is rare that ¢(¢) is known precisely. Furthermore,
if only the upper (lower) bound in (2.2) is known, then the upper (lower)
bound result in (2.4) also follows from the proof of the theorem. Now we
turn to the converse result.

THEOREM 2. Let u be a centered Gaussian measure on a real separable
Banach space B, let ¢(c) be as in (2.1), and let K be the unit ball of the
Hilbert space H, generating u. If g(1/x) is regularly varying at infinity and

H(e, K)~g(e) as e—0, (2.13)
then
$(2e) < ge/((e)'*)<de)  as e~0. (2.14)
Furthermore, if $(£)=< $(2¢), then (2.14) implies
de)xgle/(d(e)?)  as e—0. (2.15)

In particular, if (2.15) holds and if g(¢) = ¢ " #J(1/e) where 0 < B <2 and J(x)
is slowly varying, monotonic, and such that J(x)~ J(x") as x — oo for each
p >0, then

dleyx e WEB(JA/N¥-H a5 £-0. (2.16)

Remarks. (1) The restriction on 8 in Theorem 2 is natural since it is
known from [8] that H(e, K)= o(c ~?) regardless of the Gaussian measure
u (and hence the subsequent K). Also, see the remark following (3.15)
below.
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(I1) Putting Theorem 1 and 2 together, it is easy to see that
He)yrxe * (a>0)iff H(e, K)~ e **2*% provided ¢(e) < ¢(2¢) as ¢ -0,

(IIT) The remark (III) following Theorem 1 has a complete analogue
for Theorem 2.

(V) The assumption ¢(e)=<¢(2¢) as £¢—0 is easily seen to be
equivalent to ¢(e) <X¢((1 +6)¢) as ¢ —» 0 for some > 0. Nevertheless, it is
an assumption that restricts the ease of application of Theorem 2, and
although we cannot eliminate it, we indicate in Section 5 that it holds quite
generally for Gaussian measures on Hilbert space.

It is also possible to prove a surprisingly sharp random version of
Theorem 1, and we turn to this now. For example, if X, X,, .., X, are
independent observations with common law p and F,={X,, .., X,,}, then
(2.21) of Theorem 3 asserts that for every (0, 1)

P((1-8) K= F,/(2Ln)"? + B, (0) eventually) = 1,

where ¢, 0 is a function of the small ball behavior of u. Thus the n
spheres of radius &, centered at the point X,/(2Ln)'?, 1 <j<n, typically
cover (1 —0)K when r is large, and hence

N(e,, (1—3) K)<n. (2.17)

Solving (2.17) for & we obtain an upper bound for N(e (1 —8)K), and
under various circumstances this will be optimal at the logarithmic level.
More detatled remarks follow the statement of Theorem 3.

THEOREM 3. Let u be a centered Gaussian measure on a real separable
Banach space B, ¢(e) be as in (2.1), and let K be the unit ball of the Hilbert
space H, generating u. If ¢(e) = f(g) where f(1/x) is regularly varying at
infinity with a strictly positive exponent, then there exists a positive non-
decreasing function g such that, as x - «, g(x)— o0 and

S(1/g(x)) = x. (2.18)

Furthermore, if X, X,, X,,.. are iLid. Gaussian random vectors with

p=LX), E,={X, 1+ X,} where n(ny<n'® and LnxLn(n) as
n—oc, 6€(0,1), and

en=~/2(Ln)" "2 (g(Lnfy))™" (2.19)

where y is a positive constant, then

P((1—68) KS E,/(2Ln)"” + B, (0) eventually) = 1 (2.20)
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Jor y>0 sufficiently large, and
P((1-6) K< E,/(2Ln)'? + B, (0) eventually) =0 (2.21)
Jor y> 0 sufficiently small.

Remarks. (I} If f(¢)=e * for ¢>0, x>0, then we can take
g{x)=x"* and hence

ey = /2 7" (Ln)~ @202, (222)

Thus the »—n(n) randomly centered balls of radius ¢, cover (1 —&)K if
y>0 is sufficiently large, but not when y >0 is small. Hence

H(E, (1 —5)K) S (\/E,}/l,/a)Za/‘(2+m) ngoz/(2+:x)’ (223)

and, if H(e, K) is sufficiently regular, this implies the same when (1 —0)K
is replaced by K. Moreover, from Theorem 1 we actually know H(g, K) in
this case, so the randomly placed centers are near best possible. Further-
more, (2.20) and (2.21) combine to demonstrate that this “random metric
entropy,” denoted by G(g, (1 — §)K), satisfies

Ge, (1 - 5)K) ~ g2+

Of course, if dim H, = oo, then u(H,)=0, and hence with probability one
the random set E,/(2Ln)"* is not a subset of K, or even H,. Thus the
lower bound for G(g, (1 —8}K) does not necessarily translate into a lower
bound for H(e, (1 —8)K), but it complements the upper bound nicely, and
shows that in some sense the upper bound is not excessive.

(II) Theorem 3 is the sample analogue of Theorem4 in [10]. In
conjunction with Theorem 1 and Theorem 2, it furthers our understanding
of the connection between the metric entropy of K and the small ball
probabilities.

3. PROOF OF THEOREMS 1 AND 2

First we present a useful lemma.

LEMMA 1. Let u be a centered Gaussian measure on a real separable
Banach space and let B,(h)= {x:|x—h| <e}. If >0, >0, then

H(2¢, AK) < A%/2 —log u(B,(0)) (3.1)
and

Hie, AK) + log u(B,,(0)) = log ®(4 + «,), (3.2)
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where

&(r)=

1 ' 2,
e " du and  ®(x,)= u(8,(0)).
\/2‘7TJ‘-'jo

Proof. For A>0, ¢>0 define
M(e, AK)=max{n>1:3h,, .., h,e K, ||h,—h| =2cforalli#j} (3.3)
and
k
N(e, AK)=min {k; 1:3h, .. heelK, |) Bs(hj)QlK}. (3.4)
j=1

Then there exist finite sets E(e, AK) and F{e, AK), not necessarily unique,
such that

Card E(e, AK)= M(¢, AK) (3.5)
and for g, he E(e, AK), g # h, we have

Ih—gll =2, (3.6)
and
Card F(e, AK)= N(e, AK) (3.7)
with
{J B.m=2iK {3.8)
he Flz, iK)

Using the Cameron—Martin formula for Gaussian measures and Jensen’s
inequality, we have for ~e 1K that

#(B.(h)) = exp{ —1%/2} u(B,(0)). (3.9)
Hence (3.3), (3.5), and (3.6) imply
Mg, AK) min  w(B,(h)) <1, (3.10)

he E(g, AK)
and, applying (3.9), it follows that
log M(e, AK) — A%/2 +log pu(B,(0))<0. (3.11)

Now E(g, AK) maximal implies

U  B.(h)24iK, (3.12)

he E(e, AK)
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and hence
H(2e, AK) < log M(e, AK). (3.13)
Combining (3.11) and (3.13) we see that (3.1) is proved.
Using (3.4), (3.7), and (3.8), we have

U  Bi(h)24K+ B,(0), (3.14)

he F(e, AK)

and hence

N(g, AK)- max u(B,(h) 2 u(AK+ B (0)=2P(A+a,) (3.15)

he Fle, AK)

by Borell’'s inequality [1], where @®(a,.)=u(B.(0)). Now u(B,.(0))=
u(B,,(h)) for all h (see, for example, [13, p. 332]), so (3.15) yields (3.2).
Hence Lemma 1 is proved.

Remark. From (3.1) we see

lim A-2H(2¢/4, K)<1)2,

and hence, if 6 = 2¢/4, then

lim 62H(5, K) < 2¢°

5—0

Since ¢ >0 was arbitrary, this implies H(8, K) = 0(6 ~?) as was pointed out
in [8] via a similar argument.

Proof of Theorem 1. From (2.2) and (3.1) we have for Ai>0 and ¢>0
sufficiently small that

H(2e, iK)< A2 + ¢, f(e). (3.16)

Since H(e, AK)= H(eA ™!, K), we have by taking A =4(c, f(e))""* in (3.16)
that

H(e(dc, f(e)) ™V, K)<9¢, f(e). (3.17)

Letting d =j(¢) as in (2.3) and g be as in (2.5), then (3.17) and f(l/x)
regularly varying at infinity imply

H(5, K)< ¢y f(g(8)) as -0 (3.18)

for some finite positive constant ¢;.
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From (3.2), we have for A>0 and ¢>0 that
H(e, AK) = ¢(2¢e) + log (A + 2,). (3.19)

Taking A= —a,, and recalling @(«,) = u(B,(0)), we have that ¢, > — oo as
¢ — 0 with

—al/2~log u(B,(0)) = —¢(¢). (3.20)
Hence —a, ~ (2¢(¢))"? and (3.19) implies
H(e(—x,) ", K) = ¢(2¢) + log(1/2). (321)

Now H(d, K) increases as & decreases, so for ¢ >0 sufficiently small, (2.2)
and (3.21) imply that

H(e(4c, f(e)) 2, K)= ¢, f(2e))2. (3.22)

Letting 6=/(¢) and g be as in (2.5), then (3.22) and f(1/x) regularly
varying at infinity implies

H(6, K)=c, f(g(d)) as 60 (3.23)

for some strictly positive constant c¢,. Hence the theorem is proved.

Proof of Theorem 2. From (2.13) we have strictly positive finite
constants d,, d, such that

d, gle) < H(e, K) < d, g(e) (3.24)

as ¢ > 0. Hence by (3.2) for A>0 and ¢>0,

d, gle/A) = ¢(2¢) +log (1 + a,). (3.25)
Setting A= —a,, we get for all ¢ > 0 sufficiently small that
2dy gle(—a,) ') = ¢(2e). (3.26)

Now @(x,)=u(B.(0)), so —a, ~(2¢(¢))'%, and hence g regularly varying
with g(¢) —» oo as ¢ - 0 implies

d; g(e/($(¢))"*) > $(2¢) (3.27)

for some positive finite constant d,.
Now for >0 and £>0, (3.1) and (3.24) imply

d, g(26/2) < A%2 + ¢(e). (3.28)
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Taking A= 2(¢(e))"?, (3.28) implies
dy g(e/($(e))'?) < 34(e). (3.29)
Combining (3.27) and (3.29) now implies

$(26) < g(e/($(£))'*) < dle) (3.30)

as ¢ — 0. Thus the first part of the theorem is proved since ¢(c) =< ¢(2¢) and
(3.30) together imply (2.15).
If0<f<2and

gle)=¢ PJ(e™"), (3.31)

where J(-) is slowly varying, monotonic, and such J(x) = J(x*) for each
p >0 as x — oo, then (2.15) implies

$e)? P72 e I((4(e))'/e). (3.32)

Since J(x) is slowly varying at infinity, we have for each ¢ >0 and all x
sufficiently large that

x 70K J(x) < x°. (3.33)

Combining (3.32), (3.33), and that J is monotonic with J{x)=~ J(x") as
x — oo, we have

J(¢(e))"?/e) ~ J(1/e). (3.34)

Hence (2.16) holds, and the theorem is proved.

4. PrROOF OF THEOREM 3

Since f(1/x) is regularly varying with strictly positive index o, then
(21, pp. 21, 25] implies that a strictly positive non-decreasing function g
satisfying (2.18) exists such that g is also regularly varying with index 1/a.
Hence let ¢, be given as in (2.19). Fix d € (0, 1) and let K, be a finite subset
of (1 —&)K such that:

(i) Balls centered at points of K, of B-norm radius ¢, /4 are disjoint.

(i) K, is maximal, i.e., if we add a point of (1 -J)K to K, we get
overlap among the balls of B-norm radius ¢, /4 centered at this larger set.

580/116/1-10
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Thus

P(K, & E,/(2Ln)'? + B, 5(0))

< ) PUX;—(2Ln)'2 £ > (2Ln)' 2 e,/2, n(n) < j<n)

fe Ky

< ) (I—exp{ =/} La} p((2Ln)'"* B, ,(0))"~ "™

Je Ky

<card(K, (1 —exp{ —(1 —8)* Ln— ¢((2Ln)"?£,/2)})"*. (4.1)

Now ¢(e)=f(e) so there is a strictly positive constant a such that
#(e) = af (¢) and hence (2.19) and (4.1) combine to imply

P(K, & E,/(2Ln)'? + B, »(0))
<card(K,)(1 —exp{ —(1—38)* Ln—af (1/g(Ln/y))})"?
< card(K,)(1 —exp{ — (1 —=8)* Ln—aLn/y})"?, (4.2)

where the strictly positive constant d follows from (2.18).
Now card(K,) <exp{ +¢, >} by [8], or the remark following (3.15), and
since 1 — x < e~ * we have from (4.2} that

P(K, ¢ E,/(2Ln)'? + B, »(0))
<exp{+e,;?—n/2exp{—(1—38)? Ln—dLn/y}
=exp{ +gX(Lnjy) Lnj2 =2 'n' -0~ —any (4.3)
Since g is regularly varying at infinity with positive exponent, it follows

that if y > 0 is taken large enough so that (1 —§)?+4d/y <1 we have

Y P(K, & E,/(2Ln)"? + B, »(0)) < co. (44)

nzl

Hence by (i) and (ii), (4.4) implies (2.20) for y sufficiently large.
To prove (2.21) we show that

P({0} S E,/(2Ln)'” + B, (0) eventually) = 0 (4.5)

if y >0 is sufficiently small.
First we show (4.5) holds if we have for y > 0 sufficiently small that

P( Lim &' | X,/(2Ln)"2] > /2) = 1. (4.6)

H— o
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That is, if (4.6) holds, then for such y >0 with probability one
lim  inf e ' X, /(2Ln)'?|

N o NM)Sksn

= lim inf &' | X./(2Lk)"2| (Lk/Ln)"?

no oo MMSk<n

> lim  inf e ' X,/(2LKYR (Ln(n)/Ln)'?

nn)sk<n

2 lim e, ' 1X, /(2Lk)'?| - lim(Ly(n)/Ln)'?
k— n
=2C/2>0, (4.7)

since Ly(n)~ Ln and for any y >0 fixed ¢, ' is eventually non-decreasing.

Of course, (4.7) implies (4.5), so it remains to verify (4.6).
Let 4,={¢; ' | X,/(2Ln)"?| <./2). Then

P(A4,)=pu(x: x| < /2¢,(2Ln)"?)
= u(x: Xl <2./2 (g(Lnfy)) ')
<exp{—b-Ln/y) (4.8)

for some b>0 uniformly in ye(0,1]. The inequality in (4.8) follows
since f(1/x) is regularly varying at infinity and (2.18) holds. Thus
¥.5; P(A,) < o for >0 sufficiently small, and the Borel-Cantelli lemma
thus implies (4.6). Hence (2.21) holds and the theorem is proved.

5. APPLICATIONS

The results of this section are of two types. The first show how metric
entropy estimates can provide small ball probabilities in the Hilbert space
setting, and then we show how small ball probabilities can sharpen and
improve some metric entropy estimates.

A. Small Ball Probabilities in Hilbert Space

Here we assume pu=%(X) is a centered Gaussian measures on a real
separable Hilbert space H. To provide estimates for the small ball
probabilities of y (or X) we apply Theorem 2. However, to do this effec-
tively, we need to know when ¢(e) = —log P(|| X|| < ¢) satisfies ¢(e) < ¢(2¢)
as ¢ — 0. Then Theorem 2 will be quite useful.

PROPOSITION 1. Let u=L(X) where X=3,., a,/*E. e, is a centered
Gaussian vector with values in a real separable Hilbert space H, a, >0 is
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non-increasing, {&,:k=1} is a sequence of independent N(0, 1) random
variables, and {e, :k =1} is an orthonormal sequence in H. Let $(&) be as

in (2.1), by=a, ', and

x>0. (5.1)

1
flx)=
kgl b+ x
Thus f(x) is a finite, decreasing function, and if there exists a 8 > 0 such that
Jor x large

S{0x) = 4f (x), {5.2)
then

Er—n;¢(8)/¢(28)<1+[0"]<00- (5.3)

Remark. I p=%(X) is a centered Gaussian measure on a Hilbert
space H, then it is well known that X can always be written in the form
indicated in Proposition 1. Hence the only assumption of substance here is

(5.2).

Proof. Since b, =1/a, with a,>0, ¥ ,.,a, <o, we see that f(x)=
Yis1 /(1 +a,x). Hence it is clear that f(x) is a finite, decreasing
function for x> 0.

Now assume (5.2) holds, say for x> x,. From Theorem 4 in [17] we

have as ¢ — 0 that

" a;
d A —
Jo k>11+2akr ')1,(§11+2akyl
! 1 1
= dx — —_—
JO E b, +2x y‘k;b,ntzy,
71 2x
= —dx, 54
.f(, k§1 (b, + 2x)? (34)

and

¢(2s)=—logP(z Sa<e)
k=1 4

L wx ( 4bk+2x)2

fzm (5.5)
k>l b,(-4—27c}2 ‘
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where

2_ — 5.6
€ k,S;lb +2y1 =12y (5.6)
e=Y _L__:lf(b) (5.7)
S 4, +2y, 4T \2) ‘

Now for ¢ > 0 sufficiently small we have v, > x, and hence (5.2) implies

S 20y} 2 42y} =f(72/2), (5.8)

where the equality follows from (5.6) and (5.7). Since f(x) is a decreasing
function this implies that

72 = 407,. (5.9)

Hence

T 2x
2 4
L, k; (et 2x)2 "

/46 2X
< X4
L RS

fe-4 J.(f+n~,r1,f4 2x

< X4
& i kzl(bk+2x)2 o

<0 'T+1 X 1
(16'1+ )f Zl (bk“x) dx (5.10)

since ¥, ., 2x/(b, +2x)* is a decreasing function. Combining (5.4), (5.6),
and (5.10) we have (5.3). Hence the proposition is proved.

Our next proposition provides conditions to insure that (5.2) holds.

PROPOSITION 2. Let u=2L(X) where X=Y,.,a,*E e, is a centered
Gaussian vector as in Proposition 1. Let b, =a; ' = A(k) where i(t) is non-
decreasing and of the form

Ay =17J(1), t>0, (5.11)

where o> 1 and J(-) is slowly varying at infinity. Then (5.2) holds for some
0> 0.
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Proof. Now for x large, say x> x,, we have

1 l o ]
X)= < d
00 kzéanLx b|+X+J1 Al)+x !

<(+bb Y[ (5.12)

At)+

Now set 8=2h* where h' *=16(1+b,b, '). Since J(-) is slowly varying
there exists a 7, such that > ¢, implies

J(ht) <2J(1). (5.13)
Also, since xf(x)— o0 as x - oo, we have for x large, say x> x,,
(14+byb, Yy -max(h 1 t0)-x 1< f(x)/2. (5.14)
Hence for x > max(x,, x,) combining (5.12), (5.13), and (5.14) yields

1

Sox)y=% m

k=1

}(r)+0vc

>
L 1) ht)+9r

WV

* h
L
max(4 1. 1) h*t J(/?f) + fx

- h at
max(h 1, 1) ZhallJ(f) + fx

v

1 * 1
- L
2h* ! ‘(mux(h”'. t0) Iu.](l)‘f".\'

8(1 b b*l o 1 4 maxth L 1) 1 4
=8(1+50, )Ul "I+ x '_f, I+ % ’)

flx)y  max(h ' 1)
1+b,b, " x

2 8(f(x)—f(x)2)
=4f(x). (5.15)

>8(1+b2b;‘)(

Thus Proposition 2 is proved.
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We now are in position to prove a useful theorem for Hilbert space
valued Gaussian random vectors.

THEOREM 4. Let u= Z(X) where X=3,.,a,*¢ e, is a Hilbert space
valued centered Gaussian vector as in Proposition 1, and assume A(t) = 1*J(1),
where a > 1 and J(-) is slowly varying at infinity, monotonic, and such that
J(x)x J(x") for each p>0 as x — oo. If a; ' = A(k), then

log P(| X <&)x —e ¥==U(J(1/e))""*~1 a5 £—0. (5.16)

Remarks. 1f a, =k *(logk)? with «a>1 and B a real number, then
A(t)=t*(log t) %, and Theorem 4 implies

log P(}| X|| <&)x —e ¥~ D(log(1/e))#=~ b, as £—0. (517)

The small ball probabilities calculated previously for Gaussian measures
on H did not usually involve the logarithmic factors as in (5.17), as they
make the estimates which were obtained via a detailed analysis of the
Laplace transform of | X|| rather delicate (see [17] for details and further
references). The method applied here is much simpler to use, and for the
most part produces the best results.

Proof of Theorem 4. From Proposition | and 2 we have ¢(¢)=
—log P(| X] <¢) satisfying ¢(e) <X #(2¢) as £¢—0. Hence we can apply
Theorem 2 once we show

He, K)Y= g(e) as ¢—0, (5.18)
where g(1/x) is slowly varying at infinity. To do this let

supes (ka7 1zar

0 t<ajy'?

m(t)={
and define for r >0
I(1) =J- x " 'm(x) dx.
0

Then by Theorem 3 and Corollary 2 in [19], we have
H(e, K)~ I(1/¢) as ¢—0, (5.19)
where || || is the norm on H. Since a, ' = i(k) it is easy to see that as { —» o

m(t)~ > J(t) "', (5.20)
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and hence as ¢t —
I(t)~ (2 J(t) '~ (5.21)
Hence Theorem 2 above applies and

#le) = g(e/(¢(e))'?)  as &0, (5.22)

where g(e)=1I1(1/¢) by (5.19). In view of the assumptions on J(-), (5.16)
now holds.

B. Small Ball Probabilities Yield Metric Entropy Results

Sometimes ¢(g) is known very precisely, and then the approach of
Theorem 1 can often yield correspondly precise estimates of H(e, K) which
are better than those in the literature. For examples of this type we
consider the following.

B-1. ¥ Entropy Results

U X=Y,. Axlre, where {e,:k =1} is the canonical basis in the /7
spaces, | <p< oo, then P(Xel”)=1ff 3, |4]" <o and

Kz{xel”: y xi/lisl}.

k=1

If P(Xel”)=1, then K is compact in /*. For p # 2, the metric entropy of
K in the /”-norm is not so trivial to compute. The basic reason for this is
that the volumes of finite-dimensional projections of K do not compare
well with the volumes of the same finite-dimensional projection of the unit
ball of /” when p# 2. However, when 1<p<oo and 4,=k"** for a> 1
then [18] yields

1/p
o P((( X 1l iealr) <o)z e e
k=1
Hence by Theorem 1 the corresponding ellipsoids
K:{xel" ) kz“/"xisl}
k=1

have metric entropy in the /° norm

H(e, K)~ g™ /2 tp=2)
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B-2. Entropy Results Connected with Brownian Motion
Another interesting class of examples arises when p denotes Wiener

measure on C[0, 1]. In this case, K is given in (1.1) and is a compact
subset of C[0, 1] for any of the norms

(folf GNP ds)'™  1<p<oo

L1, = {supo“l ) p=co.

For Wiener measure and 1 <p < oo, it is known that
log p(lixl, <&}~ ~e7? (5.23)
and it is also known that
H(e, K, |-l )~e " (5.24)

In fact, more than (5.23) is known for the small ball probabilities, but for
1 < p <2 these results have only been obtained recently [2] and are quite
delicate. On the other side, the metric entropy results in (5.24) were
obtained in [3] for p= 0, and in [5] for p=1. The remaining cases are
then obvious. Of course, in view of our results, (5.23) and (5.24) are in
complete duality. Furthermore, since in this case the logarithm of the small
ball probabilities are known asymptotically, especially for p=2 and p= 0,
we then have correspondly better estimates for (5.24). For example, we
have the following proposition.

PropPoSITION 3. If K is as in (1.1), then for each 6>0 as e =0
(1=8)2—/3)d<e-H( K, ||-|,) <1+ (5.25)
and
(1-8)2—/3)n/d<e-H(e K ||-..) < (1 +5). (5.26)
Remarks. (1) For p=2, (5.25) is more precise than what is given in

Theorem XVI of [14], and for p = oo, there are no constant bounds in [3].

(I1) The lower estimates for metric entropy are frequently obtained
by a volume comparison; i.e., for suitable finite dimensional projections,
the total volume of the covering balls is less than the volume of the set
being covered. As a result, this method is often too crude to provide
reasonable constants.

(IIT} If AC[O,1] denotes the absolutely continuous real-valued
functions on [0, 1], then the Sobolev space

W= {fe ACIO,1]: f e L*[0,1]} (5.27)
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is a Banach space in the norm

(AP VA PE SN PR (5.28)

where || - ||, is the usual norm on L?[0, 1]. Furthermore, if K is the unit ball
in this space, then it is easy to see that H{e, K, || -||. )~ H(e, K, || -] ) as
¢— 0, and hence (5.25) and (5.26) imply similar results about H(e, K).

Proof of Proposition 3. First we recall the classical facts that if yis a
Wiener measure on C[0, 1], then as ¢ -0

log u(x: fixll,<e)~ —(1/8) -2 (5.29)
and
log u(x: x|, <e)~—(n?/8)-&£ ° (5.30)

The result in (5.30) can be found in [4], and (5.29), as well as further
references, can be found in [6, p.43].

Thus (5.25) and (5.26) will follow from (5.29) and (5.30) if we show for
a generic norm |- on C[0, 1] that

log u(x: x| <e)~—C-e? (5.31)
as ¢ — 0 implies that for all 4 >0 and ¢ — 0 that
(1-0)/2—/3/2) JC<e - Hie. K || - ) <2/2C (1 46).  (532)

Hence assume (5.31) and then by (3.1) we have with i=./2C¢ ! that
as >0

H(2e,/2Ce 'K, || -]N<2C(1 +8) e 2 (5.33)

for every 6 >0. Thus we get the right side of (5.32) by rescaling.
Now taking ﬂ,=\/3/2 \/Z’s“‘ in (3.2) we have for each 6 >0 that as
e—0

H(e, /372 /Ce 'K, |- = (1—0) C(2e) 2 +log ®(h+a,). (5.34)

From (5.31) and (3.2) we have o, » —oc and o, ~ — ./2C e~ '. Hence for
1:,/3/2¢Es~', we have A+a, — —o0 as ¢ —» 0 and thus

log @(i+ )~ —(A+a,)}2~ —(1—/3/2)? Ce 2. (5.35)
Hence (5.34) and (5.35) combine to imply that as ¢ » 0
H(s, /3/2 \/68 K= (1-26) C(26) (11— (2—\/5)2)-
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This implies the left hand side of (5.32) by rescaling. Thus (5.32) hoids, and
setting C= —n%/8 in (5.32) yields (5.26). Also, if C= —1/8 in (5.32), we
have (5.25). Hence the proposition is proved.

B-3. Entropy Results Conneced to the Brownian Sheet

If 4 is the centered Gaussian measure on C(Q), O0=[0,1]x[0, 1]
induced by the standard Brownian sheet, then the unit ball of the
generating Hilbert space for u is

K= {fe C(Q) : f(s, t)———J‘(I L[ g(u, v) du dv, ﬁQ giu, v) du dv < 1} (5.36)

If |{-[, is the usual L” norm on C(Q), 1<p<cc, then [17] an 7]
establish that as e -0

log u(fe C(Q): | fll:<e)~ —(8m) > -£ *(log 1/£%)*. (5.37)
Hence by Theorem | we have as ¢ ~»0
H(e, K, {|-11,)~& 'log /e (5.38)

This coincides with the metric entropy result obtained in [22]. Further-
more, since the L”-norms are increasing in p, we have

Hie, K, ||-Il,)<e 'log1/e (5.39)
for 1 <p<2, and also
log u(fe C(Q): | fll, <)z —& *(log 1/e)™. (5.40)
We also know from [24, Theorem 1.4] that as ¢ >0
H(e, K, -] ) =e 'log l/e (5.41)
To see why (5.41) follows from [24] we observe that (5.41) does hold for
the ball W¢" ' defined in [24]. Now one can show that fe Wi 1), iff

fon={ [ gtwoydudo—s [ | gtiv)didv
00

0 -0

s Al 1 1
—tf J. glu, 1) dA du+srj j g(u, v) du dv + constant,
0 Yo O ~0

where g ¢ g%, v)dudv<1. Now [§(f4 g(u, A)dA)* dv<1 by Jensen's
inequality, and the metric entropy of (1.1} in the sup-norm is of order /e,
hence the metric entropy of K in the ||} ,-norm is of the same order as that
of W1 Thus (5.41) holds.

2,00 1)



154 KUELBS AND LI

Since (5.41) holds, by setting A= 2(¢(e))"? we have from (3.1) that as

e—0

e~ " log(1/e) < d(e)'?, (5.42)
where ¢(¢) = —log u(f € C(Q) : ||/, <¢). Hence as ¢ -0
¢le) = e *(log 1/e)?, (5.43)

and by combining (5.40) and (5.43) we have
dle) =~ e *(log 1/e)? (5.44)

for the norm |-, as well. Of course by Theorem 1, (5.44) now easily
implies that the following has been proved.

PrROPOSITION 4. Let u be the centered Gaussian measure on C(Q)
induced by the standard Brownian sheet and let K be given as in (5.36). If
il -, denotes the usual L” norm on C(Q) and

$le) = —log u(fe C(Q): If1l,<e), (5.45)
then for I<p<2,ase—0
H(e, K, |- )= e~ " log 1/e, (5.46)
and
#(e) ~ e *(log 1/e)> (5.47)
Remarks. (1) A recent result of Talagrand [23] yields that as ¢ >0
de)~ e *(log 1/e)® (5.48)
when p = oo in (5.45). Combined with Theorem 1 this implies
H(e, K, |||l ) ~e '(log 1/e)*2 (5.49)

Hence in the two-variable setting, the metric entropy of K changes from
(5.47) when 1 < p <2 to (5.49) when p = cc. This contrasts sharply with the
one-variable results of (5.24); also see (5.23). Of course, if K is given by
{5.36), then by the argument used to verify Proposition 4, and (5.24), we
have for 1 < p< oo that as ¢ >0

H(S’ W(Z}'(i')”, ” : Hp)zH(e, K, H ”p)
Hence (5.49) yields
Hie, W0 s Ile) = e H(log 1/6)*?
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as ¢ — co. This last result seems to settle an interesting case of the work
of [24].

(I1)y fQ=[0,1]¢ d=>11is an integer, and u is the centered Gaussian
measure on C(Q) induced by the standard d-parameter Brownian sheet
with ¢(¢) as in (5.45) and p =2, then [7] shows that as ¢ — 0

d(e)~e *(log 1/e)* 2 (5.50)

Hence the same argument as used above implies that if
51 sd
K= {fe C(Q) :f(sl, ) Sd) = J;) T '{O g(ul PRI ud) dul e dud»

|| &, o dugy du -y < 1}, (5.51)
o
then for 1 <p<2and ¢e->0

H(e, K, |-|l,)~ ¢ '(log 1/e)*~". (5.52)
This, of course, agrees with the previous lower bound in [24] for the
W-ball analogue of K in d-variables, If p=oc, we are not aware of an

analogue of (5.50) when d> 2. Perhaps Talagrand’s approach will apply.

6. SOME FINAL REMARKS

Recently asymptotics for the sup-norm small ball probability, at the

logarithmic level, were established in [20] for fractional Brownian
motions, 0 < « < 2. The corresponding unit balls K, 0 <« <2, are given by

K={f(f)=T,g(t):0<z<1,jlgz(u)du<1}, (6.1)

where
Tg(0)=[ (1—uw)= " g(u) du
0

+ fo ((r—u)==12 — (—u)@= "2y g(u) du. (6.2)

See, for example [11, p. 667], which also indicates some further references.
If u, is the centered Gaussian measure on C[0,1] induced by the
a-fractional Brownian motion, then [20, Corollary 2.27 implies

—log jt, (fe CLO, 1] : I fllo Se) e * (6.3)
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as £ —» 0. Hence Theorem 1 implies
Hie, K, Ifl ) xe 20+ (6.4)

as ¢ = 0. Of course, when a =1, a-fractional Brownian motion is standard
Brownian motion, and these results coincide with premvious results. It is
interesting to try to compute (6.4) directly from (6.1) and the concept of
e-entropy. We have tried, but it seems difficult.

i q,(-), 0<ar<1/2,is the 2-Holder norm defined in [16] and K is given
by (5.51) with d=2, then Theorem 2 of [16] and Theorem 1 above imply
the metric entropy of K in the ¢,(-) norm satisfies

H(S, K, qa())zg /(1 1)(10g 1/6)(];‘27 a) {1l — =)

as ¢ 0. If d=1, and hence K is given as in (1.1), and | -|,, O<a<1/2,
is the usual o-Holder norm for functions of a single variable, then
Theorem 1 in [167] and Theorem 1 above imply

H(E, Ka ”'Hu)xsilul )

as £ — 0. To the best of our knowledge these are new metric entropy results.
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