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Limit theorems for the square integral of
Brownian motion and its increments
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Strassen’s functional law of the iterated logarithm can be used to prove limit results about Brownian
motion, but the limiting constants are given implicitly in many cases. In this paper, we provide a
probabilistic method that can give the limiting constants explicitly for the square integral of Brownian
motion and its increments.
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1. Introduction

Let {W(1), t =0} be a standard Brownian motion. Strassen’s (1964) functional law
of the iterated logarithm implies that for any 6, 0= 6 <1,
T

lim sup W (1) dt=21(8) as. (1.1)

1
1 T?loglog T L,

and for any o, 0<a <1,

linrqﬁsogpmjo R IW(t+aT)— W(t)|*dt=27(a) as. (1.2)
where
)\(0)=supJ' (1) de, (1.3)
feK Jo
T(a)=§u112J‘ - |f(t+a)—f(0)] dt (1.4)
and

K= {f: f(0)=0, f is absolutely continuous on [0, 1] and J (f' ()Y dt= 1} .
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In order to see how the sample path behavior changes when 6 and o vary, it is
desirable to find an explicit expression for A(8) and 7(«) (see the discussion below).
By using (1.3) and the calculus of variations, Strassen (1964) proves that A (0) = 4/".
To find A(#) and 7(«) explicitly by using (1.3) and (1.4) seems hard (at least the
method of calculus of variations does not seem to work). In general, evaluating the
sup of some functional over K can be very hard (see Csdki and Révész, 1979;
Hanson and Russo, 1989).

In this paper we find A(0),0< 6 <1, and 7(a), < a < 1, explicitly by a probabilis-
tic argument. We have the following results.

Theorem 1. Let a(T) and b(T) be non-decreasing functions of T for which
a(T)<b(T), Iim b(T)=0 and ;im a(T)/b(T)=6, 0=6=<1.

T—c0

Then

1 b(T)
lim su W2(¢) dr=21(6) a.s. 1.5
T—)oop bz(T) log log b(‘T) Ja(T) ( ) ( ) ( )

where A(0) is the largest solution of the equation
1-6

esinfgzﬁcos?:_ (1.6)

From (2) of Lemma 4 below, we have A(1)=0 which means the normalizer in
(1.5) is too big when 6 = 1. Qur next result provides the right normalizer when 6 = 1.

Theorem 2. Let a(T) and b(T) be non-decreasing functions of T for which
a(Ty<b(T), ;im b(T) =00,

lim a(T)/b(T)=1 and b(T)/(b(T)~-a(T))

is monotonically non-decreasing. Then

. 1 1 b(T) " 3 ‘
hr?ff.fpb(r)loglogb(T)'(b(T)—a(T)LmW(t)dt>_2 as. (17

About (1.2), we have the following result.
Theorem 3. If 1<a <1, then

. 1
lim sup

T—aT
- W(t+aT)- W) dr
Toaeo T“loglogTL [W(t+aT)~W(t)

=(1-a) (—a-> as. (1.8)

11—«
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where {(a) is the largest solution of the equation

tan:/l_;zzj;/—%] fora=1. (1.9)
The proof of Theorem 1 and part of Theorem 3 are based on the upper tail
estimates of f, W2(¢) dr and [, * |[W(t+ «) — W(t)[? dt, inequalities for the measure
of a translated ball, and a martingale form of the Borel-Cantelli lemma. This
approach is adopted from Csaki (1981) which gives an upper-lower class result for
[OT W?(t) dt as T - co. The proof of Theorem 2 and part of Theorem 3 are based
on the following well known result of Csérgé and Révész (1979) for the increments
of a Brownian motion. It can be seen that the way we prove Theorem 2 is not going
to work for Theorem 1.

Theorem A (Csorgé and Révész, 1979). Let a;(T=0) be a monotonically non-
decreasing function of T for which 0<a;<T and T/a; is monotonically non-
decreasing. Then

limsup sup Br|W(t+a;)-W(t)|=1 as (1.10)
I—»o0 O=st<T-ar
and
limsup sup sup Br|W(t+s)-W()|=1 as (1.11)
T»c0o OstsT—ay Oss=<ay
where

T ~1/2
B :<2ar<loga—+log log T)) . O
T

In order to see what Theorem 1 and Theorem 2 tell us, note the following result
which is similar to Theorem 1 and Theorem 2. Let a(T)<b(T), b(T) be non-
decreasing functions of T and lim ;. ., b(T) =00, then

1
lim su su W(t)|=v2 as. 1.12
7SR Th0T) o log b(T)) 7 e Becry ™) (12

To see that (1.12) holds note that
[W(b(T)|=  sup [W()|s sup [W(1)

a(T)si=sb(T) o=r=b(T)

and that the law of the interated logarithm implies both of the following:

1
li = A
M U T Tog log b(7)) 7 o U0, [W(DI=v2 as (1.13)

and

lim sup \W(b(T))l

T—wo (b(T)IOglogb(T))W:\/§ as. (1.14)
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Comparing (1.12) with (1.5) and (1.7), we can see that for the sup-norm, the
normalizer only depends on the end point of the block [a(T), b(T)] (that is b(T)),
but for the L,-norm, the normalizer depend on the end point of the block
[a(T), b(T)] and the length of the block.

Comparing (1.12) and (1.14) with (1.5) and (1.7), we can see the following. If
the block [a(T), b(T)] is short (i.e. a(T)/b(T)—>1 as T > ), then the upper limit
of the L,-average

1 b(T) , 1/2
(e L, o) e

is the same as SUP ¢ 1)==s(r) | W(t)| which tells us when sup, ry==or | W(t)| get
big, it will stay big on short block [a(T), b(T)] or in another words it does not
have time on short block [a(T), b(T)] to get small. But if the block [a(T), b(T)]
is long (i.e. a(T)/b(T)—> 0 <1 as T—>©), then from (1.5),

. 1 1 by
i SUP 3 T) log log b(T) (b(T)—a(T) Lm Wi dt)

_20(6)
T 1-90

a.s. (1.16)

where A(6) is the largest zero of the equation (1.6). By (4) of Lemma 4, A(6)/(1—6)
is strictly increasing to 1 on [0, 1]. Hence the upper limit of (1.15) is strictly increasing
in # and smaller than the upper limit of Sup ,( 7)< ,<»r,| W(t)|. This tells us the longer
the block [a(T), b(T)] is, the smaller the L,-average is, which is intuitively clear.

To illustrate more about what Theorem 1 and Theorem 2 tell us, we give here
the following examples:

Example 1. For x=0, let 5(T)=(x+1)T and a(T) = xT, then our Theorem 1 says

—) a.s. (1.17)

1 (x+1)T
limsup—J Wz(t)dt=2(x+1)2)\< 1
x

Tow T?loglog T ).,
From (4) of Lemma 4, (x+1)°A{x/(x+1)) is a strictly increasing function. Hence
(1.17) tells us that although the length of interval is the same, the integral of W(t)
square on the interval is increasing when the interval moves further away from 0.

Example 2. Let b(T)=T, a(T)= T —log T first and then b(T)=T+log T, a(T) =
T. Then by Theorem 2, we have

. 1 ’
lim sup J W2(1) dt
-0 TlogTloglog T Jr ot

1 T+log7
=1 W (t)dt=2 as. 1.18
mrlﬁs;lpTlog TloglogTJT () as ( )
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Example 3. Let b(T)=log T and a(T)=0 in Theorem 1, then

: 1 log T 8 )
i Wi t)dt=— as. .19
l”?fofp (log T)’logloglog T J’O (1) w8 (1.19)

Comparing (1.18) with (1.19), we can see how different the behavior of W(z) on
[0,log T1and [T—log T, T] or [T, T +log T] are.
Turning to Theorem 3, we rewrite (1.8) as

1 1 T—aT )
i W(i+aT)~ W(t)|* d
lln;esolo]p T log log ‘T(T—aT L |W(t+aT) ()

=(1 —a){(l fa) a.s.

By (4) of Lemma 5, (1—a){(a/(1—a)) is strictly increasing to 2 on [3, 1]. This
tells us that on the L,-average, the longer we look at the increment, the larger the
L,-average increment is.

2. Lemmas

Throughout this section, we assume that &, are independent and normally distributed
with mean zero and variance 1. The following lemma was first proved by Zolotarev
(1961). A more general form was proved by Hwang (1980).

Lemma 1. If A, > A,=A3= >0 and ), A, <o, then

n=l1

P( 3 )t,,§i>y>~K‘ y‘l/zexp(—%) asy- oo

n=1 1

where

K=0Q2u "A)"? 11 A=A/20)7"20 O

n=2
The following two lemmas are basic for the proof of our theorems.

Lemma 2. For 0=60<1,

P(J W3(1) dt2y> ~K(8)- y V2 CXP<_T)(}0)) asy—>oo

]

where K(0) is a constant and A(6) is the largest solution of the equation (1.6).

Proof. Since W(t) is a Gaussian processes with mean zero and covariance function
r(s, t)= EW(s)W(t) =min(s, t) for s, t[0, 1], we have in distribution

1
J W (1) de= Y AL, A, >0,

o n=1
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by the Karhunen-Lo¢ve expansion (see Ash and Gardner, 1975; Kac and Siergert,
1947). Here A, are the eigenvalues of the equation

Af (1) =J r(s, )f(s)ds, O6=t=<1.

2]

From the above equation, we obtain one boundary condition Af(6) = 5:, 0f(s) ds and

/\f(t)=J

Differentiating (2.1), we obtain another boundary condition f'(1)=0 and

i

sf(s)ds+J tf(s)ds, O0=<t=<1. (2.1)

[ i

b
/\f'(t)=_[ f(s)ds, o=<t<1. (2.2)
t
Differentiating (2.2) again, we obtain Af”(t)+ f(t) =0. Hence
. t t
f(t)y=c¢;sin \/_X+ TN cos\—/_x (2.3)

where ¢, and ¢, are constants. Substituting (2.3) into the two boundary conditions
and simplifying them yields

<\/X' 6 ] 0+9 1)
InN——6 Cos — COoOS— )¢
MUY N VA

0 0 1
+<\/XCOSW+BSinﬁ—GSin7_X> ¢, =0 (2.4)

and

(cos \/%) c— <sin %) =0 (2.5)

In order to find nontrivial constants ¢, and ¢, i.e. ¢Z+c2#0, the determinant of
equations (2.4) and (2.5) has to be zero, that is

6 1-0
6 sin —— =+/A cos —.
VA VA

Hence we have by Lemma 1, as y - o,

PU WA dt?y) :P< 3 Mﬁ;y) K@)y eXp<_2'Ay(6)>

where K () is a constant and A (6) is the largest A that satisfies the equation (2.6). []

(2.6)

Lemma 3. If a=1, then

P(Jl |W(t+a)— W(t)] dt > y>

~K(a) yV? exp(—z);—) as y - oo 2.7)

where [(a) is the largest solution of the equation (1.9).
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Proof. Let X()=W(t+a)—W(1),t=0 and a=1. Then {X(1):0=¢=<1} is a
Gaussian processes with mean zero and covariance function

r(s, t) = EX(s)X(t) =max(0, a—-‘s —t|) fors, te[0,1].

To find the eigenvalues associated with the covariance function r(s, t) of X(1),
we need to solve the integral equation

A (1) =J r(s, t)f(s)ds, O0=sit<1.

0

That is, for a =1,

1

Af(t)= J" (a—t+s)f(s) ds+l[ (a+t—s)f(s)ds, O0=sr=1, (2.8)

0

We may differentiate (2.8) with respect to ¢ to obtain

1

f(s)ds+J f(s)ds. (2.9)

t

t

Af’(r)=—J

(4]
Differentiate again to obtain Af"(#) = —2f(¢). Hence
f()y=c, sinvV2x 't+c,cosvV2A 't (2.10)

Setting t=0 in (2.8) and (2.9), we obtain boundary conditions

Af(0) = Jl (a—s)f(s)ds and Af'(0)= Jl f(s)ds. (2.11)

0

Substituting (2.10} into (2.11) and simplifying yields

a+(l—a)cos/—+t/=siny/— )¢
A 2 A
+((a—1)sin\/%—\/§<l+cos\/%>>c2=0

(14+cosvV2Ar e+ (sinvV2Ar e, =0.

and

In order that there are non-zero choices for ¢; and c¢,, the determinant of the above
two equations has to be zero. We obtain after some simplification

1 1 1
<(2a —1)sin \/_TX_VZ/\ cos ﬁ) COSE:O‘ (2.12)
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Let 3{(a) be the largest A that satisfies (2.12). Then clearly ¢{a) is the largest solution
of the equation (1.9). Hence by Lemma 1 we obtain (2.7). [J

Note that we are unable to find a similar expression like (2.7) for 0<a <1 due
to the complexity of finding the largest eigenvalue of (2.8) for 0<<a < 1. This is why
our Theorem 3 just holds for 3= a < 1.

The following two lemmas state the basic properties of A(8) and {(a).

Lemma 4. Let A(0) be defined as in Theorem 1, then

da(e) 20%A(8)
doe — A()+6%(1-06)

(1)

(2) A(8) is a continuous, strictly decreasing function on [0, 1]. In particular, A (0) =
47 2= (0)=1(1)=lim,., A(0)=0 by (2.6) and A(8/b)>A(#) as b—>1";

(3) Y1-¢? )>A(0) > 0(1-6) on (0,1);

(4) 1—6)"'A(8) is a strictly increasing function on [0,1] and limg_,(1—

6)7'A(0)=1. In particular, (x+1)°A(x/(1+x)) is a strictly increasing function on

[0, o).

Proof. By implicit differentiation of (2.6), we have

, 1-6 ‘i<1_9>_i<”(9)> 5.13)
¢ X a6 \va@)) de\ o ) (2.1
Note that from (2.6),
Sl RPN bl P EAC) (2.14)
sec ON an Ol P .

Substituting (2.14) into (2.13) and simplifying, we see (1) holds and hence (2) holds.
By using the inequality tan x > x on 0< x <3 and (2.6), we have

VA(8)/6>(1-6)/VA(8),

which is our lower bound in (3). Now turn to the upper bound in (3). If 0.< 8 =1,

then A(8)<4m ><1(1-67) by (2). If <6 <1, then
(1-0)/VA(9)<(1—8)/Ve(1—0)< 2.

Hence, using the inequality tan x < 2x/(2—x?) on (0,+2) and (2.6), we obtain

\/)T(_olt 1-6 <2< 1—9)/(2_(1~0)2)
o N \Vae) A(0)

which gives the upper bound in (3) after simplification.
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Using (1) and the lower bound in (3), we have

d (AN . _ oy dA€6)
S (X0 0)
1y 2 AO) =071 —6),

=(1-0) 20 T T m =

Hence (4) follows. [J

Lemma 5. Let {{a) be defined as in Theorem 3, then

d¢(a) __ 48%(a)
da (2a—-1)*+2ai(a)’

=1;

(1)

(2) ¢(a) is a continuous, strictly increasing function on [1,00);

(3) 2a—3>{(a)>2a—1 on [1,0);

(4) {(a)/a is a strictly increasing function on [1,0) and lim,.. {(a)/a=2. In
particular, (1—a){(a/(1—a)) is a strictly increasing function on [5,1) and

lim (1 —a)g(L) =2
a—>1 1_C¥

Proof. It is similar to the proof of Lemma 4. [

The next lemma is a version of the Borel-Cantelli lemma. A proof can be found
in Donskar and Varadhan (1977).

Lemma 6. Let F, be an increasing sequence of o-fields and A, € F;.
Ify,., P(A/F,_)) =0 as., then P(Agio)=1. O

Our next lemma is a particular case of Theorem 2.1 in Hoffmann-Jgrgensen,
Shepp and Dudley (1979) which is a well known fact about the measure of the
translated ball.

Lemma 7. Foranyb>a=0,s>0 and zeR,

P(J (W(l)-i—z)zdt?s)BP(J' Wz(t)dtZs) O

a a

Using Lemma 7 and the basic properties of Brownian motion, we have the
following lemma which is intuitively clear.

Lemma 8. Foranyb>a>c¢=0 and s>0,

b p b—c¢
P(J Wit)dt=s W(c))BP(J Wz(t)dt25> a.s.

a a—c¢

Proof. Forany x <y, let G={x < W(c¢) <y}, then G is W(c) measurable. By using
Lemma 7 and the fact that standard Brownian motion has independent and stationary




232 W.V. Li / Brownian motion and its increments

increments, we have

J P(J W3 (t)dt=s
G a

b
= P<J W) dt=s,x< W(c)<y>

W(c)) dpP

:;yp< [’ W) dt=s W(c)=z> dP(W(c)<z)

_ FVP( (" (W — W)+ di=s W(c)=z> dP(W(c) < z)
= ﬁyp( Pb(W(t)—W(c)—l—Z)zdt?s) dP(W(c)<z)

= WP( Pb(W(t)—W(c))zdt>s> dP(W(c)<z)

=P(J Wz(t)dt25> - P(G)

where the forth equality is by the vector form of Corollary 4.38 in Breiman (1968).
Hence by the monotone class theorem, the lemma is proved. [

Lemma 9. For b>a>0,d >0 and s >0, we have

P(J |W(t+d)— W) de=s W(a))

1 2 s
2P<L dt?zb—a)z)

Proof. Note that W(t) has independent and stationary increments and that as
stochastic processes W((b—a)t)=vb—a W(t). Hence we can proceed as follows.

d
W(t-i-m) - W(1)

b
P(J |W(t+d)— WP dt=s

0

W(a))

b
>P< |W(t+d)- W) dt=s

W(a)> as.

b
|W(t+d)- W) dt= s)

Ja

J0

r1 2

=P< [ |W(t+d)— W(t)|2dt>s>

W<t+i)—W(t)

s
b—a d12m>‘ O

JO
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3. Proof of the theorems

We use C to denote a finite positive constant whose precise value is unimportant
and which may be different in each statement or equation in this section. Before
we prove Theorem 1 and Theorem 2, let us observe the following reduction. First,
without loss of generality we can assume b(T) is a continuous and strictly increasing
function since clearly we can find two continuous and strictly increasing functions
b,(T) and b,(T) such that

b(T)=b(T)=b,(T) and }igoa(T)/bi(T):G, i=1,2

Second, we only need to consider b(T) = T. That is, since b(T) is a continuous and
strictly increasing function, we have

1 b(T)
lim su J W2(t) dr
poop b*(T)loglog b(T) o) ()

1 S
=limsup —5——— J W2(1)dt as.
S SZ log lOgS a(b"(s))

and

. a(b”'(5)) lim a(b”'(S)) 0

1im = = §.

S S stwb(b (S))

Third, for 0< 8 <1, we only need to show the Theorem 1 for b(T)=T, a(T)= 6T
since for any § >0,1>(6+8)>(0—8)>0, we then have

1 T
lim su *——J W3(1) dt =2A1(6+8)
pr T’loglog T Jsia) 7 (
1 T
=i —_—— W2(1) dt
1r?ﬁs;1p T?loglog T L(r) 0
1 T
<lim su —J W (t)dt=2A1(6-8) as.
T—>oop T loglog T Jis_s)r () ( )

Proof of Theorem 1. Let us first show for 0< <1,
T

lim sup W2(t)dt=2A(6) as. (3.1)

1
row T?loglog T LT
For any & >0, let T, = b*, b>1. In order to show
T

lim sup W (t)dt=21(0)-(1+¢) as. (3.2)

1
Toeo T7 log log TJBT

it suffices to show that

Y P<j W1y di=24(8)(1+ £) T2 log log Tk> <. (3.3)

k=1 Ty
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By Lemma 2, we can estimate as following for k large:

TL+1
P<J W(t)dt=21(0)(1+¢) T3 loglog Tk>
7]

Ty

1
:P(T?MJ W(1) dt=2A(0)(1+¢) T3 loglog Tk>

0T/ T
1
= P(j W (t)dt=21(0)(1+£)b?loglog bk>
6/b
A(8)
b>A(0/b)
From (2) of Lemma 4, we can choose b>1 close to 1 such that
A(6)
b*A(6/b)
Hence we conclude (3.3). .
Now for & >0, define T, = b* where b6 > 1 and consider the events

< Cexpl — (1+¢)loglog b* ).
p glog

(1+&)>143e.

T,\ ‘
A":U W (t)dt=2A1(6)(1—¢)T; loglog Tk}l
7]

I
We show by Lemma 6 that P(A, i.0.) =1 which, together with (3.2), obviously
implies (3.1). Let F, be the o-field generated by W(¢), t < T, then A € F,. And
by Lemma 8, Lemma 2 and the fact that (0T, — T,,_)/( Ty — Tx_,) < 6, we have

P(Ak‘Fk—l) = P(Aki W(Tk—1))

o1, .
=P< W3 (t)dt=2x(0)(1—¢) T3 log log Tk!W(TkA1)>
Y

0T,

\

(T,~T, ,
P< W?(t) dt=2A1(6)(1—¢) T} loglog Tk> a.s.

0T, — T,

1

:P< W3(1) dt
SOOI =T )/ (T =Ty

2

: ; log log Tk)

22)\(9)(1~€)m

1 b2 )
= P(J@ Wz(t) dt=21(6)(1 ~—s)mlog log b )

2

b . —1/2
= C<2/\(0)(1—5)(b—_1~)—210g log b )

2

b
Xexp(—(l —5)Wlog log bk> .

Hence ¥, ., P(A,/F, )= as. if we choose b> 6 ' large such that (1—¢)b*/(b—
1)><1—2%& This in turn shows our Theorem 1 for 0< 6 < 1.
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If 6 =1, using the result for 0 < <1, we have for any >0,
T

lim sup W3(r) dt

row T?loglog T Lm
) (1+e)’loglog(1+&)T
=lim sup
T >0 loglog T

1 (1+e)T
X W3(1) dt
((1+&)TY loglog(l+s)TL<T) ()

1 (1+e)T
=(14+¢)?li W2(t) dt
(1+e) 1‘?i‘jp((1+g)T)Zloglog(Hg)TLm ()

1
=(1+¢)" 2A (—) a.s.
1+e¢

Let £ » 0, we proved Theorem 1 for 6 =1 by (2) of Lemma 4.
If 6 =0, we have for ¢ >0,

T

1 8
li T Wi () dt=—
11‘;1_)50101p T?loglog T L 0 w
=1i ! Jq W2(t) dt
zlimsup 57—
T—>ocp Tzlog log T Juny

1 T
= —_ W23(t) dt=2A S.
TSP T2 log log TLT ) (e) as

235

where the first equality is from Strassen (1964) and the second equality is from

(3.1). Let ¢ >0, we proved Theorem 1 for # =0 by (2) of Lemma 4. [

Proof of Theorem 2. As pointed out at the beginning of this section, we only need
to consider b(T)= T and a(T) =T — I; where T/l is monotonically non-decreasing

and T/l; > as T — . First show that

sup  [W(t)|— inf |[W()||=0 as.

IT—ly=t=T T—ly=i=T

1
li —_—
1r§1950101p VvTloglog T
Note that

(3.4)

sup  |W(t)|— inf |W(t)!'s sup sup |W(t+s)— W()|

T—lr=si=sT T—ly=t=T

and by Theorem A,

O=st=(T+iy)—Iy Oss=<ly

lim sup yr sup sup |W(t+s)— W(t)|=1 as.

T > O=t=(T+ir)=Iy Oss<ly
where
vr = QI (log( Tl + 1) +loglog(T+1;))) V2
Hence we obtain (3.4) easily by observing v T loglog T - y; >0 as T - 0.
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Now we can conclude Theorem 2 by (1.10), (3.4) and the following estimates:

| r 1/2
i - - W3(1) dt)
H?il.}p(er loglog T Jr-h

1 .
=i ——  inf |W(1)]
lr‘lrlasogp VTloglog T 7-hr=i=<T

1
o lim sup e sup | W(1)]
M SUP T Toglog T r-n=i=1

sup W)= _inf _|W(0)]

T—lr=t<T —lr=st<

1
H?jogp VTloglog T

1
=li ——— sup [W()|=V2 as
mrlj;lpv Tloglog T 1-iy=t=1

1 T 1/2
li _— W2(1) dt)
H?_igp(er loglog T _L_IT

and

1
=l —~ _ — sup |WO|=V2 as. 0
H?»Sogvaloglog T 1-ty<t=T

Proof of Theorem 3. Let us first show

1 (1-a)T .
li _ W(t+aT)—- W(H|*ds
IHT’l_)SOt)lp T loglog T L | |

=(1-a)’¢ <L> a.s. (3.5)
11—«
Considering a subsequence T, = b, b>1 and £ >0, we have by Lemma 3,

(1) T,
P(J |W(t+aT)— WD dt

[0}

=(1-a)’¢ <T—ﬁ;> (1+¢)T7 loglog Tk>

(],

< C exp(—(1+¢) loglog T,) = C(k log ) (+e)

W(,+_L> —W(1) dt>g<i>(1+8) log log Tk>
-« I-a

Hence by the Borei-Cantelli Lemma,

1 (1-aT, .
li T (W(t+aT) - W(1)]* de
lrll;l—>so:>lp Ti log log ‘Tk JO

=(1-a)¥ <——a—> a.s. (3.6) |
11—«
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Now we can conclude Theorem 2 by (1.10), (3.4) and the following estimates:

l T 1/2
lim sup| —————— W2(t dt)
bl (lrrlog log T J r, 0

1
=i ————— inf |W(:
mrlsogp\/ Tloglog T iysi=T (W

=lim sup |W(1)]

1
r-o ~Tloglog T Tflsrué?sT

—lim sup

1
r-o v Tloglog T

sup  |W(1)|— T_linf‘gr |W(1)|

T~Ipst=<T =1

|W(t)|=v2 as.

=lim sup

1
——_——— sup
T V TlOg 10g T T—lrst<T

1 T 1/2
li —_— W3(t) dt
lr?fogp<er loglog T Jl’~h () )

and

= lim sup

1
et su W(t =\/§ a.s. |
Tcc WV Tlog log T Tfl,sesr ' ( )t

Proof of Theorem 3. Let us first show

1 (1—a)T
li T W(t+aT)— W(1)] dt
mLSOljp Tloglog T L W(t+aT) )

=(1-a)¥¢ <L> a.s. (3.5)
-«
Considering a subsequence Ty =b* b>1 and ¢ >0, we have by Lemma 3,

(1—a)T,
P(J (W(t+aT,)— W) dt

0

=(1-a)¥ (if—a> (1+¢) T2 log log Tk>

1 2 «
=P<J dt2§'<—>(1+s) log log Tk>
0 -«

< C exp(—(1+¢)loglog T) = C(klog b) '+,

W(H—é)—W(I)

Hence by the Borel-Cantelli Lemma,

1 (l-aTk
Hm sup ————— W(t+aT)— W) dr
1r£1~);1p Tiloglog T, J’o ‘ (t+aTy) ()I

=(1-a)’l (ﬁ) a.s. (3.6)



W.V. Li / Brownian motion and its increments 237

Now note the fact that if b* = T, < T, = b**!, b>1, then
Z(t)=|W(t+aT)— W(1)|
<|W(t+aT)— WO+ W(t+aTe) - W(t+aT)|
<|W(t+aTi)— W)+ sup |W(t+aT+s)—W(t+aT)

Oss=a(Tie—T)

<|W(t+aT)— W+  sup  |W(t+aT+s)— W(t+aT)

Oss=oa(b—1)T
=X()+ Y({t+aT) (3.7)
where

X(1)=|W(t+aT)—W()| and Y()= sup |W(t+s)—W()|

Oss=a(b-1)T
By Theorem A and observing that for b* =T, < T < T,;=b*"",b>1,

Ii+ loglog Ty, Tiirloglog Tieys

li <li b, 3.8
lr?%solsp Tloglog T 1nr':s0101p T, loglog T; (3.8)
we have
1
limsup —=———=—=sup Z(1)=v2a as, (3.9)
1o VT1oglog T o<i<(i—a)T
1
lim sup ——=———— su X(t)ys+2ab as. 3.10
T%op\/Tlog log Tosrs(l}z)nﬂ ) ( )
and
) 1
lim sup ——=——=——— sup Y(¢)=v2a(b-1) as. (3.11)

T>oo V T lOg log ToglgT
From (3.77), we have Z*(t)= X’ (1) +(X()+ Z(t))Y(t+aT). Hence

(1—-a)T

J(lQ)TIW(t+aT)—W(t)|2dt=J‘ Z*(1) dt

0 o

(1—a)T (1—a)T
SJ Xz(t)dt+J (X(O+Z())Y(t+aT)dt

0 0

(I=a) Ty,
er X2(t) dt

0

+T< sup  X(fH)+ sup Z(t)) sup Y{(t+aT)

Oo=sr=(l-a)T Ost<s(1—a)T Oosr=s(1—a)T

A=) Ty
sf X%(t) dt

0

+T< sup X(t)+ sup Z(t)) sup Y(t). (3.12)

Ost<s(1-a) Ty osr=s(1—a)T O=<i<T

Thus we conclude (3.5) by combining (3.6), (3.8), (3.9), (3.10), (3.11) and (3.12).
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Turning to thé other half, we define T, = b*, b(1 —a)>1 and for & > 0 the events

(1-a)T,
Ak=” |W(t+aT,)~W(t)] dt

(¢}

=(1-a)¢ <L>(1—8)Ti log log Tk}‘
1—a

We show by Lemma 6 that P(A, i.0.)=1 which, together with (3.5), obviously
implies (1.8). Let F, be the o-field generated by W(t), =< T,. Then A, € F,. By
Lemma 9, Lemma 3 and the fact that ab/((1—a)b—1)>3, we have

P(A,|F 1) =P(A | W(Ty))
aT,

1
=P ———————————
(Jo (I_Q)Tk‘Tk—l

_ ( o ) (1—¢)T;loglog Tk>
“\iTe) (—t-a) 1)) *

2

dt

W<z+ >~W(t)

=P<L1 W<t+(—1-_;¥%_—l)-W(t) 2dt
zg(ﬁ)(l—s)%loglogbk)
2C€Xp<_(l_s) <§<1fa>/§<<1—aa>i-1)))
: —(((1(:;1[))11);2 log log bk) ”

From (2) of Lemma 5, we can choose b (1—«) ' large such that

‘ o ab ” ((1~'oz)b)2 1
(1-e) <5<1—a>/5<<1—a)b—1>) (a1 1

Hence ¥, _, P(Ai| Fr_;) = a.s. which in turn shows our Theorem 3. [J
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