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Summary. Let W(t) be a Wiener process. The lim inf behavior of the’ L,-norm of
W(t) on the interval [T — a(T), T] and of | W(t + 0T) — W(t)| on the interval
[aT, BT is given under suitable conditions.

1 Imtroduction

Let { W(t), t =2 0} be a standard Wiener process. There are various types of limiting
results for W(t) and its increments. For an account on the subject and references,
see, for example, Grill [9] for the increments of Wit), Li [13] for W(z) itself.

In this paper, we consider the lim inf of the Wiener process and its increments
on certain intervals under the L,-norm. On the interval [0, T], Donsker and
Varadhan [7] showed by using their functional law of iterated logarithm for local
times that

T

1 T 1
im %j WAnd = as (L1)
6]

lim —£

T—>w

What happens on the interval [ T — a(T), T] for a(T) z 0? We have the following
results.

Theorem 1 Let a(T) satisfy the conditions
@ O0<a(TYLT,a(T)isa non-decreasing function of T, for 0 < T < o0 ;
(i) a(T)/T is non-increasing as T — oo ; or
(i) lims,,a(T)/T=p,0<p <1,
If limy ., log(T/a(T)) (loglog T)™! = oo, then

. log(T/a(T)) T ) 1
Tl_l__)n_:o W T_i(r) w (t) dr = Z a.s. . (12)
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If timy. g log(T/a(T)) (loglog T)™' < o and ET—M@ a(yT)/a(T) < oo for
some y > 1, then

lim $(7) } Wz(t)dt=% as. (1.3)

T~ T-a(T)

where
¢(T) = (log(T/a(T)) + 2loglog T)/a*(T) .
To illustrate what Theorem 1 tells us, we give here the following examples.

Example 1. For x 2 0,let a(T) = (1 + x)~* T, then (1.3) tells us by the change of
variable that

loglog T &+ 17 1
lim —2 282 [ () de = s as (14)
IT-ow xT

If x = 0, (1.4) becomes (1.1). It is somewhat strange that (1.4) is true no matter what
x = 0is. One might expect (1.4) has something to do with the zeros of W(¢). In fact,
for almost all we Q, there exist T,(w) such that

WxTw)=0 k=1,2,..., lm T\ (o)= o .

k- o

Hence we can see in a very rough sense (we use ~), for Y(7T) =T ~*loglog T,

(x+1)T (x+ 1) Tx(w)
lm y(7) | WAe)deslim p(To) | W0
T—o xT k— o0 XT;((G))
i Ty(e) ) 1
~ lim Y(Ti(w)) | W2(r)de =~
ko0 0 8

The problem, however, is to make this precise.

Example 2. Let a;(T)=c, a,(T) = ¢ /log T, as(T) = ¢T* where 0 <a < 1 and
¢ > 0 is a constant. Then (1.2) says that

I c?
lim log T | Wz(t)dt=z- as. ;

I—-w I-—c

T c?
lim | Wi(t)dt =— as.
T—oo IT—cylogT 4

logT 1 2
lim o | WA dr=
Tow 17 1l 4(1 — )

as. .
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Hence we see from (1.2) that a(T) = ¢./log T is the critical function, i.e. under our
conditions (i) and (i),

0 as. if lim a(T)//log T=0

IT—-w
T
lim | W?*(t)dt=<c?*/4 as if lim a(T)/\/logT=c
T T—a(T) T-w

oo as. if lim a(7T)/\/logT= w .

T—-w

Now we turn to the lim inf of the increments | W(t + 687) — W(t)| on the interval
[aT, fT] under the L,-norm

Theorem 2 If 0 = — o> 0and « 2 0, then

log log T#7 — a)?
lim €282 | w(s + 0T) — W(t)lzdt:(ﬁTa) as. (15)
T—o0 aT
If0<b6<f—oaand o =0, then
0? loglog T#1 _ 2
4 < lim 3’?”—;;%‘ [ 1w +01)— w2 de< “)(fw)” as  (16)
aT

7

1

o]

An interesting thing about Theorem 2 is that as long as 8 = § — « > 0, the limiting
constant does not depend on § which is not intuitively clear. For the case
f — o> 0> 0in Theorem 2, our proof for (1.5) will work in principle. However,
due to the complexity of an eigenvalue computation, we could not obtain the
desired small deviation estimates and hence the exact constant. The difficulties
come in because when we consider

ﬁ[r |W(t+ 6T) — W(t)|? dt

aT

for p—a >0 >0, both t + 8T and ¢ can lie inside the interval [«T, BT] and, as
a result, the computations become too involved. We also remark that the lim sup
results similar to Theorem 1 and Theorem 2 are given in Li [12].

We list some necessary lemmas in Sect. 2. OQur Lemma 13, Lemma 14 and
Lemma 18 provide the necessary lower tail estimates that are new and
can be viewed as an application of the comparison results given in Li [11]
(see Lemma 1 and Lemma 2 in this paper). Our Lemma 10 and Lemma 16
are the useful probability inequalities for the Wiener process, which have
independent interest and are also true for the sup-norm, L,-norm and some other
norms. We give the proof of Theorem 1 in Sect. 3 and the proof of Theorem 2
in Sect. 4.

Now we need some notation for the next three sections. Let ¢ stand for a small
positive number given arbitrarily, and C denote various positive constants inde-
pendent of k and n, whose values might change from line to line. f(¢) ~ g(¢) as
g — 0 means lim,, f(¢)/g(e) = 1.

L
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2 Lemmas

Let £,, n>1 be independent and normally distributed with mean zero and
variance 1. Lemma 1 and Lemma 2 below are the comparison theorems in Li [11].

Lemma 1 Let a,>0,3,.,a,< o and b,>0,% . b, < 0.
If Y us1|l —a,/b,| < 0, then

i/2
P( > a,é? §8>~<an/a,,> P( Y bE: §s> as ¢—0.
nz1 nz1
Lemma 2 For positive integer N and )., | a, < o0, a, > 0, we have
N-1 —1/2
P<Z a, f§£>~<1—[ 2a,,> rﬁ(N_”/zP(z ani,fgs) as £¢—-0
nz1 r=1 nz N
where Ty = 1y(¢), for ¢ > 0 small enough, satisfies the equation
an
&= _—
n‘;, 1+ 2a,ty

The following lemma was first given by Anderson and Darling [1].

Lemma 3 Let {B(t): 0 <t £ 1} be a Brownian bridge. Then as ¢ — 0,

P<j’BZ(t)dt<e>=P< > n2n2£2<8> \/4% ex P( 818>

The lemma below was given by Cameron and Martin [3].

Lemma 4 As ¢—0,

L B 1 4/ 1
P<£W(t)dt<s>—P<n§1‘n( 1/2)25,,_8> 7 <—~>

Lemma 5 For a; > 0, we have as ¢ » 0

1
Placi+ 3 W&ﬂgs)

nz1

m

aln

1

N
g exp< 8i> (2.1)
1 ~3/2. %
P<Z ETESTIE ) g exp(

> (22
Proof. By Lemma 2 and Lemma 3, we see that as ¢ — 0

1
P<alc%+ » W@@g) 3)

nz1

oo|,_.

1
N(zal)_l/zf—l/z'P< Z nznzf;%-u §8>

nz1l

2 1
~ —‘t“”z-‘exp<— —>
N AT 88
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where 7 = ’L'(‘S), for & > 0 small enough, satisfies

5 11 <1+exp(-2\/2)_ 1 > 24)
SymPnt 42t 2 /2t \1 —exp(—2/21) 2t/ "

The last equality above can be found in Gradshteyn and Ryzhik [8]. Hence we
obtain (2.1) by substituting 1712 ~ Zﬁ -g as ¢ — 0 from (2.4) into (2.3).
Similarly, by Lemma 2 and Lemma 4, we have that as ¢ > 0

1 5 _ 1
P rmrmrdse) - Lo e @

2./2 1
~ \/—“'))1/2“}) z Y a———] 'zlég
s ngln(n—l/Z)

& =
n

1
~ 8 —-3/2, 2 1/2,,1/2, _
oo (L)
where y = (&), for ¢ > 0 small enough, satisfies the equation
1 4 1 4

)

WSa i (n—1/2)% + 2y - n§1 2 + 8y n§1 n+2y w48y

Hence by using the identity in (2.4), we have y*/ 2f g)~ ! as ¢ - 0. Therefore

we obtain (2.2) by substituting y/* ~ (2\[ ¢)~! into (2.5). This finishes the
proof.

By the Karhunen-Loéve expansion, we have the following lemma. The detailed
calculations can be found in Li [12] and are similar to the calculation in our
Lemma 18,

Lemma 6 Forany b>a=0and s >0
b
P(f W2(t)dt < s> = P< > (e, b)é: < S>
a nz1
where A,{a, b) is the n'™ solution of the equation in decreasing order
b—a cos b—a
— = /x"cos ——.

Now we list some of the properties of 4,(a, b) defined in (2.6).

a-sin

2.6)

Lemma 7 Let A,(a, b) (n = 1) be defined as in (2.6) and b > a = d > 0. Then
b—a?m—1/22n2<iab)<b-—a’n—-1)"?z"% for nz22; (27

a(b — a) < Ay(a,b) < (b* — a?)/2 ; 2.8)
dn(a—d,b —d) < A(a b) < a(a—d) 2ia—d b—d). (2.9)
(An(a, b)) = (b —a) ' (n — Dz + O(1/n) . (2.10)



74 WYV Li

Proof. Let p, = (4,(a, b))" 2. Then tan(b — a)p, = (ap,)”"". It is easy to see
by looking at the graph of the function tanx and (ax)~! that
(n—1n < (b—a)p, <(n— 1/2)m for n = 1. This gives (2.7).

By using the inequality tan x > x on (0, 7/2), we have

(apy)™" = tan(b — a)p; > (b — a)p,

which gives our lower bound in (2.8). Turn to the upper bound in (2.8). We need to
show p; > (2/(* —a*))!2 If (b—a)p, = \/E, then p; = ﬁ/(b —a) >
2/b* —a?))'? If (b— a)p, < /2, then by using the inequality tan x < 2x/
(2~ x?) on (0, /2), we have

(ap;)™! =tan(b — a)p;, < 2(b — a)p; /2 — (b — @)*p?)

which is p; > (2/(b* — a*))"/?. Hence (2 8) holds.
For (2.9), it is easy to see it holds by the lower half of (2.7) when d = a. Let
prn={(A@—d b—d) Y and a>d >0 Then

pntan(b —a)p, =(a—d)"' >a ' =p,tan(b — a)p, .
Hence p, > p, which is the lower half of (29). The upper half follows from
(pila —d))™! = tan(b — a)p;, > tan(b — a)p, = (p,a)”* .
Now turn to (2.10). By the inequality tan x > x on (0, 7/2), we have
(an(n — 1))"! > (ap,)™! = tan(b — a)p,
=tan((b—a)p,—(n~Yn)> (b —a)p,—~(n — Nz >0

which gives (2.10). Thus we finish the proof
Our next lemma is a particular case of Theorem 2.1 of Hoffmann-J grgensen et al
[10] which is a well known fact about the measure of the translated ball

Lemma 8 Forany b>a=0,e>0and xeR

P (lf (W(t) + x)*dr < e) < P(f W2(r)dt < s>

a a

Lemma 9 Foranyb>a2>2d=0,5>0and xeR

/b \ b—d
PU W2 (tydr < s|W(d) = \') < P< [ wryde s>

a—d

Proof. By using Lemma 8 and the fact that the Wiener process has independent
and stationary increments, we have

a

P<f W2(t)dt < s|W(d) = x>

= P(?(W(t) — W(d) + x)*dt < s|W(d) = x>
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a

= P<lj7 (W(t)— W(d)+ x> dt < s>

P(br(W(t) +xdr £ s)

a

b—d
§P< | Wz(t)dt§s>

a—d
where the second equality is by the vector form of Corollary 4.38 in Breiman [2].

Lemma 10 Foranyb>a=2d=0and s> 0

P<J W) dr < s> < P(bfd W2(0) d < s> < (z;%)l P<f W) di < s> |

a a—d a

In particular, if d = a,

P<§ W2(1)dt < s> < P<bf
a 0

Proof. The fitst part can be easily seen by integrating the inequality in Lemma 9.
For the other part, we have by the basic properties of the Wiener process

b—d
P< [ w()yde < s)
a—d

a

W2(1)dt < s> - P(i W2(1)dt < (7_5;)—2)

—® o]

T P<br (W(t) + x)* dt < s> dP(W(a — d) < x)

Il

<aid>m T P<T(W(t)+ x)? dt§s> dP(W(a) < x)

- 0

a 1/2 b )
:<a-d> P({W (t)dt§s>

where the first equality is by similar argument as those in the proof of Lemma 9 and
the last equality follows from the first equality backward.

Lemma 11 Let a, > 0 and an 1y < . Then for any s >0,
P(aci+ T wiiss)sba r 5 atiss)
nz2 nz2
Proof. By conditioning on {&; = x}, we have

P<alé%+ Y a, ﬁ§s>= | P<a1x2+ > an£§§5>dP(§1<x)

nz2 ayx2<s nz2

é%ZmﬁS)fdMéwéMw%Z%&g>

nz2 aix2<s n=2
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Lemma 12 Let a,>0and ) . a, < . Then for any s >0 and 0 < § < 1,

P<alf§ + Y a,l §S>

n=2

= Q2r~1)Y2(6sa; t)i? ‘exp(— %5saf1>*P’< Y @S (1— (3)s> .

nz2

Proof. By conditioning on {&; = x} as we did in the proof of Lemma 11 and
restricting a; x> < s, we have

P<al~f1 Z 052§S>

= (alx + 2§s>dP(€1<x)
a1x2<5s >
2 < anfn = S> dP(¢; < x)
a1x2<és
> 2r~ Y2 (Ssar )Y? exp(—%ésa{1>‘P< Y a2 (1 — 5)5) .
nz2

Lemma 13 If s/(b — a)? small enough, then ;
1 (b—a)
8 b

<j W2(t)dr < s) S K, ((b—a)/a)t'?- exp< ;

where K, > 0 is a constant independent of a, b and s.

Proof. By using Lemma 6, Lemma 7, Lemma 11 and Lemma 5, we have

P(; Wiy de < s) < Y Anla, b)éE2 < s\)

nz1

§P< (b—a)é? + Z 1/;))2 5En S8

1
< (s/a(b — a))*’*- P < Z (n+ 127% 36 = = (b —a)2>

<Ky {(b—a)/a)t'? exp<_ é (b — a)2> “

s

Lemma 14 If s/(b — a)* small enough, then for 0 < § < 1

P<If W2(t)dr s> = K, (ds/(b* — a?))M?- exp<— é(([; : ;;Z)

where K| > 0 is a constant independent of a, b, 6 and s.
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Proof. By using Lemmas 6 and 7, Lemma 12 and Lemma 3, we have

P(? W2(t)dt < s> = P< Y. Aula, b)ér < s>

a n=1

b? — a? (b — a)? \
§P< 2 g+ mff§s>

nz2

= (2r™ )2 (205/(b* — a?))'? -exp (= 35/(b* — a?))

N 1, (1-90s
P( Z 2 25" é(b—a)2>

Ml

1 (b—a)?
> Ky (3s/(b* — a*))2- exp(— 5 El - 5;) .

The following is a well known version of the Borel-Cantelli lemma.

Lemma 15 If A, are events such that ) . | P(Ax) = o and

> 2 P(44)
hm k=11=1

"y Y P(A)P(4)

k=11=1

A

L,

then P(A; i0) = 1.

Lemma 16 Forany b’ >d' 2b>a=0and s > 0, s > 0, we have

P(? W2(t)dr < s, 13: W2(tyde < s’>

a a’

< P<} W2(t)dt < s> P<b’j_'b W2(t)dt < s’)

a' —b

<a/a_/ b)m ‘P@ W2(t)dr < s> P<b§ W2(1) dt < s’) ‘,

Proof. By Lemma 9, Lemma 10 and the basic properties of the Wiener process, we
have

A

PG W2(t)dt < s, bj W2(t)dt £ s’)

Of P<lf7 W2(tyde < s,bj, W(tyde £ 5'|W(b) = x> dP(W(b) < x)

of P(} W2(t)dt < s|W(b) = x>‘P<? W2(5)dt < 5’| W(b) = x>dP(W(b) < x)

o a’
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< T PG W(t)de < s|W(b) = x> P(b'j_b W2 (rdt < s'> dP(W(b) < x)
= <l§ W2ty de < s>-P<bfb Wi(t)dt £ s/>

() =) o wnmss).

where the second equation is the fact that the past and the future are conditionally
independent given the present (see Theorem 9.2.4 in Chung [5]).

Lemma 17 Let f> 1 and M > 1. If k' 7% < 1/2 for k = ko, then

Mk dX

sup :
k2 ko kL (xF — 1 — k)72

Proof. Observing (k/x)? < k/x and x™% < 1/(2x) for x > k > ko, we have

Mk dx M d

x! 82 (M -1

x .
sup o ] |
kz ko kﬂsw (xf — 1 — kP)12 x! B/2 K ko kL (1—x*— (k/x)P)% - x
Mk dx

< su

B kégo k£1 (1 - 1/(2x) _ k/x)l/z‘ x

< L Msk dx

B "S‘;Ik)o kU2 e —k— 1/2)1?

<M -1
The following two lemmas are basic for the proof of our Theorem 2

Lemma 18 If a = 1, then

P<} |W(t 4+ a)— W(t)*dt < s> ~ K(a)e‘exp<—%g> as &¢—0

where K(a) is a positive constant.

Proof. Let X(t) = W(t+a)— W(t), t 20 and a = L. Then {X(t):02ts1}is
a Gaussian process with mean zero and covariance function

r(s,t) = EX(s)X (1) = max(0,a — |s — t}) for s, te[0,1].

Hence we have in distribution

1

1wt +a) — w()>di= ) J@EZ @50,

0 nz1
by the Karhunen-Loéve expansion. Here, in decreasing order, A > 0, n = 1, are
the eigenvalues of the equation

1

L) =[r(s0)f(s)ds 0St<1.

0
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We need to find A%"). For a = 1, the above equation can be written as
t 1
) ={(a—t+s)f(s)ds+ [(a+t—s)f(s)ds, 0<¢=<1. (211)
(0] t

We may differentiate (2.11) with respect to ¢ to obtain

L) = —[f(s)ds+ [f(s)ds. (2.12)

Differentiate again to obtain Af"(t) = —2f(t). Hence

f(t)y=cysin /227t 4+ ¢, co8 /247 ¢t (2.13)

Setting t = 0 in (2.11) and (2.12), we obtain boundary conditions

Af(0) = } (@a—s)f(s)ds and Af'(0)= }‘f(s) ds . (2.14)

Substituting (2.13) into (2.14) and simplifying yields

<a+(1—a)cosﬁ—£sin\/%>cl
+<(a~—1)sin\/§—\/§<1+cos\/%>>czzo

(1 +cos /247 Yy +(sin /247 e, =0

In order that there are non-zero choices for ¢; and ¢,, the determinant of the above
two equations has to be zero. We obtain after some simplification

and

1

<(2a— l)sin—ﬁ—\/ﬂcosﬁ)cosﬁzo

Hence from (2.15) we have forn = 1, 244)) ™2 = (n — I)m + n/2 and Q4§ _;)" /2
are the only solutions of the equation

(2.15)

Qa—Ntanx=x"1 a=1, on[(n—Dr,(n—Dr+7n2). (2.16)
Using the inequality tan x > x on (0, z/2) and (2.16), we have
(2a — 1)71(245,- )" = tan(2A5) 1)~ 2
= tan((245,-1) " = (n — Dm) > 245, 1) PP —(n—Dn 20

which gives us (24,, ;)" "* = (n — 1)m 4+ O(1/n). Hence

1 -1
) (2—1ziﬂl)~<n2n2> ~1

nz1

< 0.
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Thus by Lemma 1 and the first part of Lemma 5, we obtain

P(} IW(t +a)— W(t)*dt < £>
0

=p< T awe? §8>

nzl

- p(rapct+ 3 271 527's)

n=1

1
~ C(a)'P<2’li‘1“)€§ + Y s z—lg>

nz1
1
~ K(a) & exp I as ¢—-0

where C(a) and K(a) are positive constants. This finishes the proof of Lemma 18.
As mentioned in the introduction, when 0 < a < 1 we are unable to find an
expression similar to (2.15) for .

Lemma 19 Ifb=a = 1and s > 0, then

P<f |W(t + b) — W(1)]* dt < s> < P(f |W(t + a) — W(1)]* dt <s>‘

)
Proof. Let A@,n = 1, be defined as in the proof of Lemma 18 Thenforb > a = 1,
A5 =25 and A5 <%

since the function xtanx is increasing function on [(n — \)m, (n — )m + 7/2).
Hence

P<}|W(t+b)— W(t)|2dt<s> =P< Y oAper <s)§P< Y oAwez <s>
0

nz1 nz1

= P( ? [W(t+a)— W(£)}*dt < s>

which concludes the proof
Finally, we mention two results for further reference. They relate to lemmas we
give early and are not used in the proof of our theorem. First, by Lemma 6 and (2.9)
in Lemma 7, we have forany b >a=d = 0and s > 0,
h s

<b—d , (a— dy? > (b > <b——d , >
Pl | Wiydt < s)SPUIWryde<s <Pl | W()dt<s ).

2
a a

a

A little bit stronger form of the second part of the above inequality is given in
Lemma 9. Second, we have from (2.10) in Lemma 7,

S dns1(a,b) (b — @) 2m*n® — 1| < oo . 2.17)

nz1
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Hence for 0 < 8 < 1, we obtain as ¢ » 0,

P(f W2(t)dt < g> = P< S (0, 1)E2 < ,s) (2.18)

nxz1

= P<11(9, DET+ Y Anra(6, &R0 S 8)

nz1

1 — 6)?
~c(0)'P<A1(9,1)5%+ I é,%Hgs)

nzil

~K(0) ¢ exp<— ) _80)2 é)

where C(f) and K (6) are constants. For the above estimates, the first equality is
Lemma 6, the first ~ follows from Lemma 1 together with (2.17), and the second
~ holds by (2.1) in Lemma 5.

3 Proof of Theorem 1

Let us note that under our conditions (i) and (i), our theorem becomes
loglog T I 2
m&%_%g_ | wArydt =2 as, 0<p=1.
IT—->w T T—a(T) 8
This can be easily derived as follows if our theorem holds under our conditions
(i) and (i) For 0<p<1 and &¢>0 small, we have 0 <7 —(p +¢&)T =<
T—a(T)E T~ (p—¢)T< Tif Tis large and thus

loglogT 1 2
lim P28 § (= 22
T—w T—(p+e)T
loglog T I
> lim 225 | wAndi
T .
T-w I—a(T)
loglog T 1 —g)?
> im 2T | e =L s
T T T—(p—&)T 8

For p = 1, the above argument also works by using (1.4) as the upper bound. So we
only need to show our theorem under conditions (i) and (ii).

Under conditions (i) and (ii), lim;o, a(7T)/T=p =<1 and when p=1 we
actually have a(7) = T. In this case the result follows immediately from (1.4).
Hence, for the rest of this section, we assume conditions (i) and (ii) hold and
lims., a(T)/T = p < 1. Now we formulate the following three statements which
together imply our theorem.

lm o(1) | WAdiz) as W)
T->w T—-a(T)
lim 0EL/a(T)) f Wrdi<t as )

1o @H(T) T—a(T) 4
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Hence for 0 < 6 < 1, we obtain as ¢ — 0,

P(f Wi(t)dt < g> - P< Y 4,0, )& < g> (2.18)

nz1l

= P</11(9, DET+ Y Aur1(0, 18241 < 8)

nz1

g2
~C<0)<P<11(e,1)5%+ y U9 55+1§8>
Rzt mn'n
(1— 0P 1
8 &

~ K(G)s*exp(—

where C(#) and K(0) are constants. For the above estimates, the first equality is
Lemma 6, the first ~ follows from Lemma 1 together with (2.17), and the second
~ holds by (2.1) in Lemma 5.

3 Proof of Theorem 1

Let us note that under our conditions (i) and (i), our theorem becomes

loglog T I 2
li_m—% ] Wz(t)dtzp— as, O<p<1.
T—-w0 T T—a(T) 8

This can be easily derived as follows if our theorem holds under our conditions
(i) and (ii). For 0 <p<1 and £¢>0 small, we have 0 < T —(p +¢&)T =
T—a{T)ET—(p—¢)T < Tif Tis large and thus

loglogT 1 z
lim CBOET o gy g ()
T-w T T—(p+eT 8
loglog T I
> lim 225 | () de
T .
T-o T—a(T)
loglogT I —g)?
> him L | pra=C as
I-w T T—(p—8)T 8

For p = 1, the above argument also works by using (1.4) as the upper bound. So we
only need to show our theorem under conditions (i) and (ii).

Under conditions (i) and (ii), limy;., a(T)/T=p <1 and when p=1 we
actually have a(7) = T. In this case the result follows immediately from (1.4).
Hence, for the rest of this section, we assume conditions (i) and (ii) hold and
lim;., a(T)/T = p < 1. Now we formulate the following three statements which
together imply our theorem.

lm o(T) | Wdizl as 0
I—w T—a(T)
_log(T/a(T)) T . 1
I!ITH}OWT_{(DW(I)dt_éZ a.s. (II)

TN A5 PR 55
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If lim;g log(T/a(T)) (loglog T)™' < oo and mpwa(yT)/a(T)< oo for
some y > 1, then

T 1 -
lim ¢(T) | W*()di=- as.. (I1m
T—-ow T—a(T) 4
Let us first show (I). Define
Ti=1 T —aa(Tii) =Tk (3.1)

where g, = 1 — (1 — ¢%)? and 0 <& < 1. Note that T — g, a(T) is a strictly in-
creasing and continuous function by our conditions (i) and (i) Hence T in (3.1) is
well defined and T, > Ty, limy..,, T, = oo. Since

¢(T) = (log(Ti/a(Ti)) + 2loglog T)/a*(Tis1) and T — a(T) £ Tes s — aTert)

for T,,, > T = T, it is sufficient to show

log(T:/a(T; 2loglog T, Ty 1—
fim og(7x/al ;))4— og log T; f W(t) dtg—,f s (32)
k= o a (T;f""l) Tr+1—a(Tr+1) 4

Note that for k large, T, — a(T;) = (1 — p)/2. Thus by Lemma 13, we have for
k large

P<10g(Tk/a(Tk)) + 2loglog Ty Tj.k

1 —¢
w2 dt £ ——
(dr= 1 >

a*(Tis1) Trws —a(Txs1)
Ty 1 — 2 T,
=P< f W2(1)dt < . 0" (Tir1) >
Tk+1*la(1'k+1) 4 log(Tk/a(Tk)) + 2 IOg 10g Tk

<C- (Tk — D1 + a(ﬂ+1)>1/2
- Tiv1 — a(Ti+ 1)

ol — log(Ti/a(Ti)) + 2loglog T (T — Tiws + & Ti1))*
p 2(1 —¢) a*(Tisy)

{0 ealT )\ log(Ty/a(Ty) + 2loglog Ty
‘C<Tk+1—am+1>> exp(’ 21— o) (1'8”>

C< a(Tk-!—l) >1/2 "<a(Tk)>(1+s)/2'< 1 >1+s
Tiv1— a(Tiv1) 1; log Tx

c Cl(Tk) 1/2” a(n) 1/2‘ 1 i+e
- T — a(Ty) T log 7
Ty — T

C‘
(T — a(T)) 2T (log T)' ™

Bl o f &
Tlog T ™ = 4., x(log )"

A

IA

IA

lIA

C




Lim inf for the Wiener process and its increments 83

Hence by the Borel-Cantelli lemma, we obtain (3.2) which shows (I).
Now turn to the proof of (II). Let T, be the unique solution of the equation

x/a(x) =k? where B=2(1+¢/Q2+¢e>1. : (3.3)
Then T4, > T} and lim,, , T}, = oo. Define the events
T 2
K (1 + &)a*(Ty) }
Ay = Wiy dt € ———2"T— "%
: {Tk_iak) (9= S ioe (T ()

We then show P(A4; io.)=1 by Lemma 15 which in turn gives us (II). Let
8, = (log k)™ ! Note that 7;;/a(T,) = k*. Hence by Lemma 14 and the choice of ff in
(3.3), we have for k large

5 a( T +2) >/ log(Ti/a(T,))
40T, — a(T)log(Tija(T))  “FP\ 720+ 9 — 6,

co (i) (42)”
— \log(Ti/a(To)) T

 log(Ti/a(T)
2(1 + ¢

P(Ak)zC<

— Ok log(Tk/a(Tk))> = C (klogh)™

which shows > , ., P(4;) = .
For given & > 0 small, define k, large such that for [ > k > k,, we have by
Lemma 17

(1P — 1 — kPy~ 12 = 1+612 (3.4)
k<I<(d- '+ 1)k
-1+ 1)k
<2 | (P12 xR dx < C
k+1

Note that for [ > k and § > 1,
I—a(l) 2 Tivy — a(Tiv ) = (k + Wa(Tiwy) —a(Tiq) 2 KPa(T,) =Ty .

Hence for given k, k, < k < n, we can split the set {l:ko < k << n} into two
parts,

Ly ={likg<k<l T—a(T)2T>8(T—a(T))};
Ly={likg<k<LdT,—a(T)) 2T} .
If le L,, then by Lemma 16,

T —a(Ty) >“2 oo
P(AA) = P(A)PANY = (1 =8)"12P(4)P(4). (3.5
(A l)’<Tl~a(Tl)—Tk (A P(A4) = ( ) (A)P(4). (3.5
Note that by Lemma 16, we also have for ko < k < [
v el a*(T) (1 +8)>
P(A A) £ P(A) P W2)ydt < ——————— |, 3.6
(AxA;) = P(Ay) <Tﬁa(£1)_rk (1) = T log(T,ja(Ty) (3.6)
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If le L, then
8T KPa(T) =67 T, 2 i~ a(Ty) = (I — Da(T) z (I — Da(Ti)
which gives k <1 < (67" + 1)k. Now for le L, we have by Lemma 13,

Ti— Tk ) M
P< Tz-a(£z)—rk Wi de = 4log(Tz/a(Tz))> 37
. a(Th) 12 H M
=C <m> exp<— TS )

< C(T/a(T) — 1 = Tifa(T)~* (T;/a(T))~He 2
=C-(If —1 =K 12 |71+b2
Hence we have by combining (3.4), (3.6) and (3.7)
Y X Placa) (38)

ko<k=nlel;

(C P(A,) Y (1F — 1 — kF)~12 ',l~1‘+ﬂ/2>

k<I<(5=1+1)k

IA

2
ko <k

n

o i P(A4y) .

IA

ko<k=n
Now by Lemma 15, (IT) follows from lim,_, ¥.;_, P(4) = o and the estimates

n n

Y }: P(AA) =Y P(A)+2 Y  P(4A)

k=11=1 1<k<Isn

= i P(Ak) + 2 zol i P(AkAl) + 2 i z P(AkAl)

k=11=k+1 k=kot+1 lel,

+2 }_nj > P(AcA;)

k=ko+1leL>

n

<(1+ 2k +2C) Y P(4y) + (1 — &)~ z Z P(A)P(A) .

k=1 k=11=1

Now turn to the proof of (III). Define

Ti=1, TLiyi—a(Tiv1)=T. (3.9
Then for k large,
lim T, = o and 1> Ti/Ti+y>(1—p)/2>0. (3.10)
k— o0
Thus
T,-(log T:) - (log log T;)** £ C T; -y *(log Tr— 1) (log log Tp-1)*/% . (311

Define the events

B T s 1L+ s)aZ(Tk)
Be= { Tk_£<zk) WA dr = 4(log(T/a(Th)) + 2 log log Tk)} |
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We then show P(B, i.0.) = 1 by Lemma 16. By our assumptions for case (III) and
the fact that if ¢ > O is small enough, we have

log(T/a{T)) <2¢ ' loglog T . (3.12)

Hence by Lemma 14 (choose 6 > 0 such that (1 + &) (1 — J) = 1), (3.12) and (3.11),
we have for k large

5 a(Ty) >1/2
(T, — a(T,)) (log(Ti/a(T3)) + 2 log log T3)

log(7;/a(Ty)) + 2 log log T,
B 21 + &) (1 = 8)

1/2 1/2
> C a(T) " 1
= Tx (e + 2)loglog T)

1
: eXP<— Elog (Ti/a(T;)) — log log Tk>

P(By) 2 C(

) a(Ty)

T, log T, (log log T;)'/?

” Ty — Ty

Ti-1-log Ty - (loglog T;—)*/?
dx

xlog x - (log log x)*/?

[\

C

ItV

C

Ty
>c |

Tyt

which shows >, ., P(B,) = .
Since a(T) is non-decreasing, we observe that a(2(1 — p)™ ' T)/a(T) = C for

Tlarge by iterating lim; _, , a(yT)/a(T) < oo for some y > 1if necessary. Hence by
(3.10), we can define k, large such that for [ > k,,

al)=Ca(l-y). (3.13)

Note that for I >k + 1, T, — a(T}) > Tio1 — a(Ti+1) = T;. Hence for given 6 > 0
small and ko < k < n, we can split the set {l:k, + 1 <k + 1 << n} into two
parts,

Li={like+1<k+1<l, Ti—a(T)> T, >0l —a(T))};
Ly={likg+1<k+1<L (L —a(T})) 2T} .
If le L,, then by Lemma 16,

T, —a(T))

PB.B) £ <Tz —a(T) — T

)1/2 P(B)P(B)=(1—0)""?P(B)P(B). (314

Note that by Lemma 16, we also have for ko < k </

ﬂ e a*(T) (1 + &)
P(BB;) = P(By) P(rl»mgl)—rk WA () de = 4(og(T,ja(T)) + 2iog log Tz)>(3 .
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Ifle Ly, then T, > 6(T;, — a(T})) = 6 T, which gives T, < T;_, < 6~ ' T,. Now for
le Ly, we have by Lemma 13, (3.12) and (3.13),

AT +e) )
P W2(t)d < (.16
(n_a(iz)_h (04t = S ogtTi/a(T) + 2Toglog T) )
o)\ log(Ti/a(T})) + 2 log log T
SC| "exp| —
T o)~ T, 2+ 0)
o o(T) (Tja(T)ye+
S G AT - LTI (log T
o(T)
< (-
= T am) - Ty Ty
a(T,_l)
< (.
= Tam =y T
—c Iii— Ty
(T, — )2 17
Ti-1
<c 5 dx

L (= T

Hence we have by combining (3.15) and (3.16),

Y Y PBB)S Y (CP(B y j_L>

172, .12
ko<k<nleL; ko<k<n Te<Tio1<@G~1+1)Tx -, (X = T x

. <CP(Bk)‘ (aﬂﬂjgﬂk dx )

L (= T X

=C P(By). (3.17)

Now similarly to what we did at the end of the proof of (II), P(B, i.0.) = 1 follows
from (3.14), (3.17) and lim,-,,, Y ;_, P(By) = co. Thus we complete the proof of
(IIT) and hence finish the proof of our Theorem 1.

4 Proof of Theorem 2

Note that (1.6) follows from (1.5), Chung’s law of iterated logarithm [4]

log log T\ '/?
m(ﬁ“i) sup | W(1)] = —

— as
T—w T 0=t=7T \/§
and the simple estimation
(@+0)T BT
[ W@ +0T)— w(t)|>dr < [ IW(t+0T)— W(t)|? dt
aT af

S4p-—T  sup W)

0St<(B+)T
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if 0 <8 < f — o Hence we only need to show (1.5).

Define Tpiy =1 +f(TL)T, Ty =2 and f(x)=(log,x)” 5 Here and
throughout this section, log,x = log log(max {x, 2e}). Let us first show that for
0zf—~a>0,0=20

BTx _ 2
tim 5251 s omy - wopaz P00 as w
T~ LIRS P

For any ¢ > 0 and k large, we can pick é > O such that
Tiv1/Ti<1+dand e =((f—a—ad)/(f—a))? 1 —e)" 1 —1>0.

Thus we have for k large

P28l T v on) - wopas E5% —9) @

alr+1

i 2 (ﬁ—fx)zl
P< “Ik-;“i/Tk (Wt +0)— W(r)]*dt £ m (1 - g))

IA

‘ ' 2 ([3_05)2 i
P(a(l&é)tW(tT 0) — W(t)|* de gm a _8)>

P(ﬂ—a(jlm | W(t+6)— W(t)|2dr < (f—a)® - a))

0 _410g27—;<”
1 9 2 Bou \ 1—¢
= I < .
P<£ W<[+ﬁ—oc—oc5> Wi dt:(ﬁ—a—aé) 410g2Tk>

< Cexp(—(1 + &) logy i) = C-(log )1+

where the first and the third equality hold by the scaling properties of the Wiener
process, the second equality holds since the Wiener process has stationary
increment, and the last inequality follows from Lemma 18 Now by
limy o T/ Tivq = 1,

(log 1)~ *"

log T,,) 478 = Ty — T,
k§1 (log 1) k§1 T.7(T}) (Tt %)
(log Tiyq) 1)
<C T; T,
SCL Ty T W

We conclude (4.1) by the Borel-Cantelli Lemma and (4.2)
Now consider 7;, £ T < T;.., and note that we have

lim T,/T=1 and Ilm T7/T,,,=1.

T—-x T-o»
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Define

X(t)=|W(t+ 6T) — WD)l ;

Y(t) = sup

0£s26(T-Th) ,
Z(t)=|W(t+6T)— W()|.
Then Z(t) = X(t) — Y(t) and therefore
ZH )z X2 () — (X(0) + Z(0) Y(2) .

|[W(t+ 0T, + sy — Wt + 0T;)| ;

Hence

log, T
2

log, T
2

lim

IT—-w

BT
[ Z*(t)dr z lim
aT

T—

ﬁfr X%1t)dt 4.3)

— log,
— lim

T—-w

2

T4
[ (X(1)+ Z(1) Y(2) de .

aT

From (4.1) and limy_ ., 7;/7,+ = 1, we have

log, T

2

BT
I X2(r)de

aT

lim

T~

2

BIx
long" [ 1W(t+0T) — W) dt

k+1 aTp+s

lim

T—-

BTy
logzzT" {IW(t+0T) — W(t)|*dt

ko alr+y

lim

T

(B — )P
4

[1\%

=

as.. 44

By Theorem 1.2.1 in Csorgé and Révész [6], we obtain

lim (T log, T)~ />
T—-

lim (Tlog, T)~ /2

T -

\/ié as.

sup  X(¢t)

aT £t £ 8T

1w+ 01, — W(t)l

4.5)

A

sup
0St<(B+8)T —0Tx

and
lim (Tlog, T)~ 2
T-ow

lim (Tlog, T)™ 12

T—w

\/% as. .

sup
af £t< BT

| W(t + 6T) — W(1)|

Z(1) (4.6)

IIA

sup
0Ost<(f+0)T—6T

Note that

sup
al £t =BT

Yt) < sup sup

0=ZrSBT O0=s208(Tu+1—Txk)
sup sup
Ot (f+0)T 0526 f(Ti) T

[W(t+ 0T, +s)— W(t + 01

=

Wt +s)— W(t)|.
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We have by Theorem 1.2.1 in Cs6rgé and Revész [6]
lim (f(T)Tlog, T)"'> sup Y(1)

T—ow «T St BT

< lim (f(T)Tlog, T)"Y*  sup sup | W(t+s)— W)l

T-w 0Zt<(B+0)T 0520/ (T)Tk
<C as.

Hence

lim (T~ (log, T)®)"* sup Y(t)=0 as.. (4.7)

T al £t =BT

Combining (4.5), (4.6) and (4.7), it follows that

tim IO?ZT Bfr (X(¢) + Z(2) Y(¢) de (4.8)

T—w©

< (B — o) lim (Tlog, T)~ ' < sup X()+ sup Z(t)>
T-w aT St < BT ol <t < BT
~lim (T tlog, T*)H?  sup  Y(1)

y ol <t < BT

=0 as. .

Therefore we obtain our lower bound of Theorem 1 by (4.3), (4.4) and (4.8). Now let
us show thatfor 6 = f — o> 0,0 =0 and any ¢ >0

(p—o)?

logz IIWt+0T) WP dis———(1+9 as.. (49

lim
T—ow

Case (I): o> 0. Let T, = b* for b > 1, ab > f + 6 and define the events

Bk={logyfk77‘ [ 1W(t+0T,) — W(z)|2dz§@~(1+a)}

Note that a7, . > BT, + 0T, by the choice of b. Thus the events B, are indepen-
dent since W(t) has independent increments. By using Lemma 18 and looking at

what we did in (4.2),
0
<t + m) — W(t)

1
Py =]
0
1
log, b")
3

= C-(log, b9t exp(—
which shows ), ., P(B,) = co. Hence by the Borel-Cantelli lemma, we conclude
4.9). )

Case (II): o = 0. Let T;, = (log k)* and the events

aTx

2 1
- (logs bk)*)

log, T, Plx
AF{OgTZ2 O W+ 0T — W) dt<ﬁ (1+s)}
ko (B+0)Ti-1

P Bl+e TE
— 2 < .
2{ (j) |W(t+ 0T;) — W(t){*dt < Z log T, }
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By using the scaling property of the Wiener process and Lemma 18, we obtain

P(A,) = P<} W<t + %) — W(t) ’ dr £ 11— i (log(3k logzk))_1>
0
= C-(log(3klog, k)™t~ exp(— 42 log(3k log, k))

which shows Y, ., P(4;) = oo. Since the A, are independent, we have P4,
i.0.) = 1. Note that by the law of iterated logarithm,

log, T, B8 Tw-1 T
OgTzz F] W+ 0T — W) de = 0( ’}1 “(log, :/;)2> -0 as (4.10)
k 0 k

as k — oo, (4.9) follows from (4.10) and P (4, io) = 1.
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