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Probabilités/Probability Theory
(Analyse fonctionnelle/Functional Analysis)

Metric entropy and the small ball problem
for Gaussian measures

James KueLss and Wenbo V. L1

Abstract — We establish a precise link between the small ball problem for a Gaussian measure p
on a separable Banach space, and the metric entropy of the unit ball of the Hilbert space H,
generating . This link allows us to compute small ball probabilities from metric entropy results,
and vice versa

L’entropie métrique et le probléme de la petite boule pour une mesure gaussienne

Résumé — Nous établissons une relation précise entre le probléme de la petite boule pour une mesure
gaussienne dans un espace de Banach séparable, et Uentropie métrique dans la boule unité de | ‘espace
de Hilbert H, qui engendre . Cette relation nous permet de calculer des probabilités pour le probleme
de la petite boule & partir des résultats connus pour I'entropie métrique, et vice versa.

Version francaise abrégée — Soit | une mesure gaussienne centrée dans un espace de
Banach réel, séparable avec norme ||.||. On suppose aussi que K désigne la boule unité dans
Pespace de Hilbert H, qui engendre p. Alors, K est compact dans B avec entropie métrique
H (g, K) finie. Pour K compact, rappelons que H (g, K)=Ilog N (g, K) ou

N (e, K)=min {ngl :dky, ., k€K telles que U B, (k) 2K },
=1 .
et B,(k)={x:||x—k| <e}. La notation f (x)~g(x) lorsque x — a signifie que :
' 0<lim f (x)/g(x)< lim f (x)/g(x)< o0,

X —a X = a

et f(x)<g(x) lorsque x — a signifie que :
lim f(x)fg (x) < 0.

Nous énongons les théorémes suivants :

THEOREME 1. — Soir log W(B,(0))= —¢(e), et supposons f(1/x) & variation régulicre &
Pinfim, avec des constantes strictement positives ¢y, ¢, telles que ¢y f (8)§(i)(8)§62 (&) pour
e>0, suffisamment petir. Si j(€)=¢€(4c, f () 2 et g(j(e))~e lorsque € — 0, alors on a

H, K)xf(g(e) lorsque € — 0.

THEOREME 2. — Soit (i)(s) comme dans le théoréme 1 avec (i)(s)<<4>(2 €) lorsque € >0, et
supposons que g(1/x) est d variation régulicre a Pinfini avec

He, K)~g(e) lorsque £ — 0.
Alors, on a
4) (e)~g (8/4) (&) lorsque € — 0.

En particulier, si g(e)=g P J(1/g), oa 0<B<2 er J(x) est & variation lente, monotone, et telle
que J ()= (x°) lorsque x — o0 powr tour p>0, alors on a

4)(8) ~e TR T ENHETP rsque € — 0.
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THEOREME 3. — Soit p=2(X), od X=Y A&, e, est un vecteur gaussien & valeurs dans
kz1 ]

un espace de Hilbert H-véel séparable, h;>0 est décroissante, {ék:kgl} est ume suite de
variables aléatoires indépendantes de loi N(0, 1), et {e,:k=1} est une suite orthomormale
dans H. Soit

)

kz1
0, r<ip?

et, pour t=0,

1
I(z)=J ¥ tm(x)dx
0

Sou 4)(8) comme dans le théoréeme 1 avec 4)(8)<<(2 g) lorsque € > oo, Alors, si I()=*J () ou
0<PB<2 et J(.) est a varation lente, monotone, et telle que J(x)=]J(x%) lorsque x — 00 pour
tour p>0, nous avons

log P(||X||Se)~ —g 22BN (T (1/e))YC7P Jorsque € — 0.

1. INTRODUCTION. — Let p denote a centered Gaussian measure on a real separable
Banach space B with norm || . || and dual B* If K is the unit ball of the Hilbert space
H, which generates p, then it is well known that lim "2 log p(x:||x[|zn=—-Qc») 1,

t—+

where

c*= sup sup f*(x)= sup jfz(X)du(X),

I fllg==1 xeK I flgx=s1

and hence the distribution of the norm at infinity is, at the logarithmic level, a simple
function of o2. The small ball problem studies this distribution near zero, namely, the
behavior of logp(x:||x||<e)=—¢(¢) as € =0, and here the behavior of ¢ (¢) depends
on much more than the single parameter o, Indeed, the complexity of o (e) is well
known, and there are only a few Gaussian measures for which ¢ (¢) has been determined
completely as € - 0. The point of this paper is to link the behavior of d(e) to the
metric entropy of K. Hence as a parallel to the large ball behavior being determined
by the simple characteristic of K given by o2, the behavior of $ (e) is governed by the
more subtle metric entropy. This is a connection which is rather simple, but it links
two delicate topics in a useful way. That is, once this link is obtained, then metric
entropy results regarding K will yield information regarding 4)(8)“ Conversely, 1n
instances when we know the behavior of ¢ (g), we can establish some non-trivial and
sometimes new results about the metric entropy of the various sets which appear as
K. We include a sample of these applications in what follows, but our primary results
are Theorems 1 and 2 below. We also mention the interesting partial result in [4] which
was one of the starting points of this work.

If p is a centered Gaussian measure on B, then it is well known that there is a unique
Hilbert space H,=B such that p is determined by considering the pair (B, H,) as an
abstract Wiener space (see [S]). For example, if B=CJ0, 1] and p is Wiener measure,
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then the unit ball of H, is

(1.1) K={f (z)=ff’ (s)ds, 0<t<1: Jl | f ()2 ds<1 }

4] 0
Lemma 2.1 in [6] presents various properties of the relationship between H, and B, but
the most important for us at this point is that the unit ball K of H,, is always compact
in the B-topology. Hence K has finite metric entropy.
To be precise we recall that if (E, d) is any metric space and A is a compact subset of
(E, d), then the d-metric entropy of A is denoted by H (g, A)=log N (e, A) where

N{(g, A)=min {ngl :3a,, ..., a,€ A such that U Bg(aj)gA},
j=1
and B (a)={ x:d (x, a)<e} is the open ball of radius ¢ centered at a.
To state our results we use the notation f (x)~g(x) as x > a if

0<lim f(x)/g ()= m f (x)/g (x) < oo

x—a x—=a

and write f (x)<g(x) as x - a if lim foo/g(x)<o0.

x —a

2. THEOREMS.

TueorREM 1. — Let p be a centered Gaussian measure on a real separable Banach
space B and let
2.1 log n(B,(0)= —¢ (&)

where B, (0)={xeB:||x||<e}. Let K denote the unit ball of the Hilbert space H,
generating w. If f (1/x) is regularly varying at infinity with strictly positive finite constants
¢y, ¢4 such that

(2.2) i fE)S0(E)Sc, [ (e)

for €>0 small and

(2.3) je)=e(dey f(e) 12,

then

(2.4) H(e, K)~f (g(e)) as e—0

provided

2.5 g(je))~e as e—-0.
Remarks. — 1. The most prevalent form for f (g) is

(2.6) f(e)=e"*(log 1/e)°

where >0 and fe(— o0, + ), and hence as € » 0 we have

2.7 H(s, K)xeg 292 9 (Jog 1/s)2P2+)

When B=0 in (2.6), a one sided estimate of (2.7) was obtained in [4].

IT. Perhaps it should be pointed out that the function f (¢) is used in Theorem I
because it is rare that ¢ (¢) is known precisely. Furthermore, if only the upper (lower)
bound in (2.2) is known, then the upper (lower) bound result in (2. 4) also follows from
the proof of the theorem. Now we turn to the converse result.

TuroREM 2. — Let p be a centered Gaussian measure on a real separable Banach
space B, ¢ (e) be as in (2.1) with ¢(8)<<¢(2 g) as € =0, and let K be the unit ball of the
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Hilbert space H, generating p. 1If g(1/x) is regularly varying at infinity and
(2.8) H(s, K)yx~g(e) as e—-0,

then
d(e)~g(e/d(e)?) as -0

In particular, if g(e)=¢"PJ(1/g) where 0<B <2 and J(x) is slowly varying, monotonic and
such that ¥ (x)=J (x*) as x — oo for each p>0, then
be)me MR (1/e))*C7 P g5 £ 0.

Remark. — 1. The restriction on f in Theorem 2 is natural since it is known (see [4])
that H(e, K)=0(s~2) regardless of the Gaussian measure g (and hence the sub-
sequent K). When B=2, these idea also apply, but their application is much more
delicate.

II. Putting Theorem 1 and 2 together, it is easy to see that ¢(e)~e™* (x>0) iff
H(e, K)~e™ 2% and ¢ (e)«< ¢ (2¢) as £ = 0.

ITI. The remark (IT) following Theorem 1 has a complete analogue for Theorem 2.

The proofs of Theorems 1 and 2 depend on a number of important results for Gaussian
measures including the Cameron-Martin translation formula and Borell’s inequality. It
is also possible to prove a random version of Theorem 1. This result gives the possibility
of computer simulation for the metric entropy of the sets which appear as the unit ball
of the H,. Since K is usually infinite dimensional this may not be terribly practical,
but our random version of these results is suprisingly sharp. The proofs and further
applications will appear in [7].

3. ApprLicaTions — Our first result shows how known metric entropy results can
provide estimates for small ball probabilities.

Taeorem 3. — Let p=2(X) where X= Y, M &, ¢ is a centered Gaussian vector with
Kz 1

values in a real separable Hilbert space H, A, >0 is non-increasing, { & :k=1} is a sequence
of independent N (0, 1) random variables, and {ek:kg 1} is an orthonormal sequence in
H. Let
sup {kid, =1, t=at
m(t):{k;l’{ k= } =M
0, t<iyt

and define for t=0
I(l)=fx‘1m(x)dx‘
0

If 1()=1»*J(1) where 0<P<2 and J(.) is slowly varying, monotonic, and such that
T()=T(x*) as x — o for each p>0, then ¢ (g) «(2¢) as € > 0 implies

log P(||X|| &) —e7 2P (1/e)*?™P as e -0

Remarks. — If A, =k *(log k)® with o> 1/2 and B a real number, then as 1 —
m ()=t (log )P

Hence in these situations,
(3.1 log P(||X|[<e)x —e2@* Y (log (1/))*H= D
provided ¢ (e)«< ¢ (2¢) as € > 0.




C. R. Acad. Sci. Paris, t. 315, Série I, p. 845-850, 1992 849

The small ball probabilities calculated previously do not usually involve the logarithmic
factors as in (3. 1), as they make the estimates which were obtained via a detailed analysis
of the Laplace transform of ||X|| rather delicate (see [9] for further references). The
method applied here is much simpler provided ¢ ()« ¢ (2¢) as € —» 0, and holds because
in this case

K={xeH:x=Y (x,e)e, ». (x, e)*/A<1},
kz1 k21
and hence the metric entropy of K can be determined by the function I1(z), see [11]. The
result then follows by an easy application of Theorem 2. On the other hand, sometimes
¢ (e) is known very precisely, and then there are correspondingly precise estimates of
H (g, K) which are better than what is in the literature.

If X=3 X&.e where {e k= 1} is the canonical basis in the /7 spaces, 1 <p< oo,
k21

then P(XeP)=11iff ) |A|P<co and
kz1
K={xel?: Y xf/hi<1}

k21

If P(Xel’)=1, then K is compact in /. For p#2, the metric entropy of K in the /-
norm is not so trivial to compute. The basic reason for this is that the volumes of
finite dimensional projections of K do not compare well with the volumes of the same
finite dimensional projection of the unit ball of ” when p#2. However, when 1 <p< oo
and A, =k~ %7 for o> 1 then [10] yields

log P( ) [M[P|E ) 7<) —e7Pe7 D)

kz1
Hence the corresponding ellipsoids
K={xel?:) k*"xi<1}

k=1
have metric entropy in the 7 norm
H (g, K)rg ™ ?p/Catp=2)
b

Another interesting class of examples arises when pu denotes Wiener measure on
C[0, 1]. In this case, K is given in (1.1) and is a compact subset of C[0, 1] for any of

the norms
1 i/p
q If(s)l”ds> . 1Zp<w
[ f]lp= 1 \Jo

sup | f(s)], p=w.

0ss=1

For Wiener measure and 1 <p< oo, it is known that

(3.2) log p(|| x||,Le)x~¢e 2
and it is also known that
(3.3) H(, K, ||.|)xe™"

In fact, more than (3.2} is known for the small ball probabilities, but for 1 <p<2 these
results have only been obtained recently in [1] and are quite delicate. On the other side,
the metric entropy results in (3.3) were obtained in {2] for p=o0, and in [3] for
p=1. The remaining cases are then obvious. Of course, in view of our results, (3.2)
and (3.3) are in complete duality. Furthermore, since in this case the logarithm of the
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small ball probabilities are known asymptotically, especially for p=2 and p= oo, and
hence we then have correspondly better estimates for (3.3). For example, we have as
e—0

(2—\/5)/4§8”H(8, K, | [l and (2‘\/?)7‘5/4§8.‘H(8, X,

o) S

For p=2, the estimates are better than those in Theorem XVI of [8], and for p= co,
there are no constant bounds in [2].
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