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Let £=(&,) be iid. N(O, 1) random variables and ¢(x), ¢'(x): R* = [0, «©) be
seminorms. We investigate necessary and sufficient conditions that the ratio of
P(g(¢)<e) and P(q'(&) <e) goes to a positive constant as ¢ —»0*. We give
satisfactory answers for /,-norms and also some results for sup-norms and
I,-norms. Some applications are given to the rate of escape of infinite dimen-
sional Brownian motion, and we give the lower tail of the Ornstein-Uhlenbeck
process and a weighted Brownian bridge under the L,-norms.

KEY WORDS: Lower tail; Gaussian seminorms; Gaussian processes; infinite
dimensional Brownian motion.

1. INTRODUCTION

Let £=(¢,) or £=(&,) be a sequence of independent Gaussian, mean 0,
variance 1, random variables throughout this paper. We shall study the so
called lower tail or small deviations of seminorms, that is, the asymptotic
behavior of P(q(¢)<e) as e > 0" where ¢: R* > R, =[0, o0) is a semi-
norm. There are several reasons that we are interested in this problem. For
example, finding the rate of escape of infinite dimensional Brownian
motion comes down to finding the lower tail of g(x) (see Erickson®).
Beyond the study of P(q(&)<e) as ¢ 07, there has been considerable
work regarding P(q(&)> y) as y - o0. For example, the precise asymptotic
behavior is given in Zolotarev?!’ and Hwang"! when ¢(-) is an /,-norm,
and using the exponential integrability result of Fernique® one always
obtains upper bounds of a Gaussian nature for P(g(¢) > y) regardless of
the form of g(-). Furthermore, the asymptotic behavior of P(q(£)>y) as
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y— oo at the logarithmic level can be found in Marcus and Shepp*) and
Borell.®* .
Let us consider /,-norms first, that is,

172
q(x)=< Y a,,xﬁ) forany x=(x,)eR®
nzl

where (a,) is a given sequence of positive numbers and >ns1d,<00.
The setting here actually comes from the following general problem.
Considering a Gaussian process {X(1):a<t<b} with mean zero and
covariance r(s, t)= E(X(s) X(t)) for s,te[a,b], we need to know the
asymptotic behavior of

b
P(j XZ(z)dzgsz) as £—0

in some problems of probability theory and mathematical statistics. By
the Karhunen-Loéve expansion, we have in distribution 2 X%(t) dit =

Yas1 4,8} where 1,>0 for n>1, 2u>14,<00, is the eigenvalue of the
equation

Y=["rsn/wds  a<i<s

Thus the problem reduces to finding the asymptotic behavior of
P(Y, . a,E2<¢%) as ¢ -0 where a,>0 and 3, a, < co. Theoretically,
the problem has been solved by Sytaya.'® Namely,

Theorem 1. (See Ref. 19.) If g, > 0 and 2ons1d, <00, then

P(Z anéissz)wu(e) as £-0"

nzl1

where

2 -1/2
a”y(l
Qa(8)=(4n (———))
n; 1+2a,y,

1

-exp (82%‘“5 Y log(1+ 2a,,ya)>
nzl

and y,=y,(¢) is uniquely determined by the following equation for £¢>0

small enough:

=) -

—nzl l+2a,,ya
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Here and throughout this paper, the notation f(x)~g(x) means
f(x)/g(x)— 1 as x >0 or x - co. Note that the given asymptotic behavior
is still an implicit expression that is highly inconvenient for concrete com-
putations and applications. This is primarily due to the series form for
Q.(¢) and the implicit relation between ¢ and y in Theorem 1.

A number of authors, Hoffman-Jorgensen et al,'®) Csaki,"”’ Cox,'®
Ibragimov,!? and Zolotarev,®*) have tried to find the asymptotic behavior
of P(¥,.a,E2<¢?) as -0, or upper and lower bounds for ¢ small for
some particular a,, after the work of Sytaya'”) because of the difficulties
in applying Theorem 1. Most of the results of these papers involve difficult
calculations that most often depend very much on special properties of the
sequence (a,). As a result, we thought it would be of interest if a com-
parison result could be established, and this is one of our main considera-
tions in this paper. We also investigate comparison results for the
sup-norms and the /,-norms (1< p<oo), but here we can say less.
However, as the examples in Section 4 demonstrate, the comparison results
in /, are a very useful computational tool.

In Section 2, we give one of our main results of this paper, which is to
establish a comparison of P(Y,.,a,E2<¢?) and P(¥,., b,E2<¢%) as
¢ — 0 where a,,, b, are positive and 3, , a4, <, ¥ ,5 b, < oco. Namely:

Theorem 2. IfY, ., |1—a,/b,| <o, then

1/2
P(Z a, f,<82>~(]—[b,,/a,,) P(Z b,,é,z,seaz) as e—-0

nz1 nzli

Furthermore, if a,>b, for n large, then P(¥,.,a,E2<¢’) and
P(Y, -1 b,E%<¢?) have the same order of magnitude as ¢ -0 if and only
if >, 1—a,/b,| <.

As a direct consequence, if the two sets of norming constants for the
independent coordinate /,-valued Brownian motions satisfy the conditions
of Theorem 2, then these two Brownian motions have the same rate of
escape function (see Erickson,® Kuelbs,"® and Cox‘®’). Also we show that
{Corolllary 4) for any positive integer N,

logP(Z a,,éf,<82>~logP< y a,,é,z,<82> as &—0

nzl nz=zN

which gives a positive answer to a problem proposed by Cox,? that is, for
the independent coordinate /,-valued Brownian motion, the rate of escape
function will not change if we delete a finite number of the coordinates.
In Section3, we give a computable formula in many cases for
log P(Y,., a,E2<¢?). By using this formula we calculate some particular
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interesting cases. In particular, Example 2 extends some results of Csaki”
for multiparameter Wiener process. Also we list some known concrete
examples. These examples serve as the standard base for the comparison
theorems in Section 2.

In Section4, by using the comparison results in Section2 and
examples in Section 3, we demonstrate how to find the lower tail of
the Ornstein-Uhlenbeck process and a weighted Brownian bridge under
L,-norms even though we cannot find the eigenvalues of these processes
explicitly.

In Section 5, we consider sup-norms first, that is,

g()=sup {Ix,l/a,}  forany x=(x,)eR®

nx1

where (a,) is a given sequence of positive numbers. These were studied in
Hoffmann-Jergensen et al.,""® and our results provide additional informa-
tion.

For the /,-norms, 1< p < oo, that is,

i/p
q<x>=(z a, |x,,|") forany x=(x,)eR"

nz1

where (a,) is a given sequence of positive numbers and ¥, , a, < o0, we
give two basic facts that were motivated by comparison results for /,-norms
and sup-norms. All of them strongly suggest that the same type of com-
parison results for p=2 in Section 2 and p=oo (ie., sup) in this section
should hold for 1 <p < oo. Also we give some conjectures and suggestions
for further research.

2. COMPARISON RESULTS FOR THE /,-NORMS

Throughout this section, we assume a,, b, are positive, 3, ., a, < oo,
21 b,<00, and £>0.

Lemma 1. If ¢ is small enough and y, and 7, are unique defined by
¢ such that
aﬂ bﬂ

= )

— =y (2.1)
nx1 1+20"’))a n=1 1""an'))b

and

<o (2.2)
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then

 {Va bavaVs
lim (———1) 22 =0 2.3
e=0\7s ,,g‘ (14+2b,7, (1 +2b,7) (23
In particular
lim 24— 1 (2.4)

e—=07%,

Proof. First observe that

(Z-1)s b2yt
% T+ 25,701+ 26,7,)

nxzl
_|7a 5 ( a, b,
12,5 \1+2a,y, 1+2b,y,
<l Z an—bn . a,Ya . 14
2n>1 a, 1+2anya 1+2bn}’a
1 b
<= —n
5 Yot o <

nz=1

Hence we obtain (2.3) by the D.C.T. since y,— 4o and y,— +o as

e—0.
In particular (2.4) holds since

. b2yaVs . biy.y 1
lim inf (AR > lim inf 1ialb =-
inf 3 126700 +26.7,)° oo (1+2b,7.)(1+2b,7,) 4

&0 n>1

O

If ¢ is smail enough and

2 4 5y A 25
#=2 1+ 2a,1, ”§N1+2a,,rh, (2:5)

nzl1

Lemma 2.

then

a’t Ty N
" =— 2.6
) Z (14 2a,71, {1 +2a,ty) 4 . (2.6)

nzN

lim (—t—l——l

e—+0\Ty

In particular
lim =1 @7
=0Ty

The proof is similar to the proof of Lemma 1. We omit it here.
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Lemma 3. Under the assumptions of Lemma 1, we have
i, % (smya) =0 28)
ERA TS p e
lim E. <[’1—"(E“7;;%)2=0 (2.10)

Proof. First observe

b —a 2 b \?
n n S l——-—"
Py ((1+2b,.y,,)an> 2 ( a) =@

nzl n

and hence (2.8) is proved by the D.C.T.
To prove (2.9), note that

Z bn —4a, bn()’a - ))b)

aoy (1 +2b,y,)a, 142b,y,

_ (Zg_l) Z bn_an 1 bnyb
B Yb nxzi an 1+2bnyb 1+2bnyb

<ty v [z
Vs nx=1 a,
Hence by (2.4) of Lemma 1, we obtain (2.9).
Now
Z <bn()’a N })b))z
nzi 1 + 2b'fo

Y n>1(1+2bn))b)2

=<l_h>2.}’g 3 bavavs

Yo/ Vawzi (1+26,7,)(1+2b,7,)

'(1+ 2bnyb _'yam‘yb>
T+2b,7, v

2
s(l_zg> .&.(HI _Ya
Y Ya Vs

and hence by Lemma 1, we obtain (2.10).

) Z brznyayb

nz1 (l +2bn'yu)(1 + 2bnyb)
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. Lemma 4. Under the assumptions of Lemma 2, we have
llm Z <a"(‘[1 - TN))Z — 0

Eﬁo'n}l 1+20,“CN
Proof. Tt is easy to see by following the proof of (2.10) and using
Lemma 2 and

N—1

))

n=1

a’tty
(+2a,7)(1+ 2a,70)

<KN-1l<w

Lemma 5. Under the assumption of Lemma 1, we have

(2 (=55 2 (=) )

Proof. First note that

bn?b
1+42b,y,

all y(l

li —
m 1+2a,y,

£ 0

)

nz1

(2.11)

z

nzl
~

<
Ya

anYu

1+2a,y,

)

nzl

(

)

nzl

+

Loy
Va

((1

+ 2

nzl

{

7/

(

+

nzl

1+ 2a,,ya) -

)
Va

1+
-1

bn?b 2
142b,7,

z

nzl

¥

n

)3

nzl

)2-

an’)’u

(

a,Yp

a,Ys bn 12

1+ 2a,,y,,>

( (
5 ( ApVa

=1
2

4an Vb

2
1 + 2bn?b) ‘

] + 2anyb> |

a
{—2n
b

bnyb

n

nzl1 1 +2a,,'))u)
(1+2a,,)?

2

1 +2bn’)}b)

{

4anyb

(1+2a,y,)?

)

)
)

a
1—n
b,

(1 +2a,7,)?
2
anya
gl (1 +2anva> '((H
-(<1+gﬂ>+1)

Vb

Ya

(1+2a,7,)’

)
)+)




and observe that

)

nzl

|G
b

all

(2+b—”){w and
(2

L

n
Hence we have

bn?b

2
l +2bn?b> /nél

Vs

.(2+_
Y

a

lim sup

e—0

< lim sup
e—0

a

which gives (2.11).

Li
2
Ay7a
—_—1 =00
E, (1 + 2am/a)
( a7, \
14+2a,y,
=0
[

Lemma 6. Under the assumptions of Lemma 2, we have

. a, T
lim il
e—=+0 1 +2a,,1',

(o) 2.

(=

anTN V)Z _ 1
14+2a,ty) )

The proof is similar to the proof of Lemma 5. We omit it here.

Proof of Theorem 2. Let

!

mw=(ﬁn—2

Y log(1+ 2a,,ya))

nzl

1
~ (-3 X tog(1 +20,3,)

nx=1
) 1
=e'(y.—vs)—5 ). log(l+x,)
nz1

where
_(1+2a,y,)b,

T+ 2b,7,) a,

and y,, y, satisfy Eq. (2.1).
Now using the inequality x — x?/2 <log(1
obtain

1
82()’(1 __‘Yb) “_5 Z Xy

nzl

1
SR(e)<EE(y,—7,) — 3 Y (x -

n=1

1 b
—— log =
) 2 né:l o a,
- bn —da, 2bn(?a _yh)
(1 + 21’::7’1)) a, 1+ 2bnyb

+x)<x for x> —~1, we

(2.12)

1
5*5)
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Note that

1 b 1
z L DL
2n§1( an> 1+2bn?b

Hence by the D.C.T.,, we have

1
i 2 —_ —— =
3{9})(8 (Ya—7s) 22 x,,) 0

nzl

Using Lemma 3 and

b,—a 2 b —a
xi= T h ) +4 [N U —
ngl § ,,gl <(1 + anyb) an) ,,z;:x (1 + 2bn'))b) an
bulya—7) (bn(n— n))z
Lalva= V) | g4 5 (2eVa Vo)
(1+2b,75) ,,; 1+2b,7,

we have lim, oY ,», x2=0. Thus lim, _ , R(¢) =0 by {(2.12), and together
with Lemma 5 and Theorem 1, we finish the proof of the theorem. d

Corollary 1. Let B,, B,.,.. be independent standard one dimensional
Brownian motions. Let

X,(0)=(Ja, By(1), /a3 Bol1)n)  Xy(0)=(/by Bi(0), /b2 By(0)...)

be processes taking values in R and assume S 18, <0, 2,51 b, <00,
If 3,5, |1—a,/b,l is finite, then X (¢) and X,(t) have the same rate of
escape function with respect to the /,-norm.

Proof. Note that by Theorem 3.5 of Cox, the rate of escape
functions with respect to the /,-norm for X,(¢) and X,(¢) both exist. Then
by Theorem 2 of Erickson®’ and our Theorem 2, the claim is true. ]

Corollary 2. Let b,=a, for n>N+1 (N is fixed) in Theorem 2; then
N 172
P<Z an¢5<82)~(n b,,/a,,) p(z b"(:gggZ) as 60
nz1 n=1 nzl1

ie., the first N terms of a, do not change the order of magnitude of
P(Zn>l ané,z,gsz) as 8—)0.
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COl'O“ary 3 If Z">l |1 _an/bnl 1’a,,<b }(n) < and P(Zn>l a é
<¢?) has the same order of magnitude as P(Y, ., b,E2 <e?), that is,

lim P(Z a,,éi<82)/ (Z b, ,,sa) C>0
e—0

nzl nxz1

then

|G

b,

)

nzl

1/2
< and C=< IT b,,/a,,)

nzl

where I(x) is indicator function.

Proof. By using Theorem 2 for integer N >0, we have

P( ) a,,€§<82)

nzl

=P( Z anl{a,,<b,,}(n)éi+ Z ad iy 5 p,0(0) &

nzl I<sngN

+ Y adinn(n) éssaz)

nzN+1

SP( Z anl{a,,<b,,}(n) 6,21-*_ Z an’{a,,;b,,}(n)érzg

nzl IsagN

+ 3 b,.l{anabn;(n)éf,sez)

nzN+1
o 12 1/2
~( l—[ bn/an> ( H n/an) P< Z bn i<82>
n: {ap <by} W {an= by} nzl

that is,

C=lim P(Z a, ,Z,Ssz)/P<Z b, ﬁs&)

-0 nz1 nz1

1/2 1/2
<( 1 b)) (11 ba)
n: {a, < by} n<N:{apz by}

Let N — oo; we have [, {an> ba} (Bn/a,) converge to something bigger than
zero and finite, ie, Y, |1 —a,/b,| 1y, > 4,(n) < 0. And together with the
assumption, we get 3,.,|1—a,/b,| <oo. The second part is true by
Theorem 2. O
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Remark 1. Combining Theorem 2 and Corollary 3 gives us the
. following: If

Y =au/b,| Iy, <p,(n) <0 (in particular if a, > b, for n large)

nzl

then P(T,>1a,E2 < ¢*) has the same order of magnitude as
P(3, . baE2<e?) if and only if 3,5, |1 —a,/b,| is finite. On the other
hand, we can conclude that no matter how we arrange 4, and b, the
condition ¥, |1 —a,/b,| < oo is not necessary by comparing (3.1) and
(3.4) for d=5.

Our next result shows the change of tail behavior if the first N—1
terms of 3, a,&2 are omitted.

Theorem 3. For positive integer N, we have

P< 5 anéf,éaz)

nzl

N—-1 —1/2
~< I1 Za,,) r;‘”“"/2P< Y a,,é,z,<82> as £—-0
n=1 nzN
where 1, = 7,(¢) satisfies the equation
all
1+2a,ty

ef= )

nzN

Proof. Let

S(£)=<82T,——12‘ Y. log(l +2a,,tl)>

nzl

1
— (szr,\,—-é Y log(l +2a,,rN}>

nz1

1
282(T1 ‘IN)—E Z log(l +xn)
nzl1
where x, =2(t, —ty)a,/(1 +2a,ty) and 7, T, satisfy Eq. (2.5).
Now using the inequality x—x2/2<log(l +x)<x for x> —1, we
obtain

. 1
I T T CRTUERMES D COF ) I CIL

nzl 2n>1
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Noting that by (2.5) and (2.7)

1 LT NS a,ty
2. _ 2 == _1]l. _YntN
elni—) 25,"" ”§,1+20,,1N
gg- 1'——1,—»0 as ¢—0
2 |ty

and lim, o, x}=0 by Lemma 4, we have lim, _, S(¢)=0 by (2.13). Hence

p(Z a,,éf,<82>

nzl

a,t;, \*\ 2 , 1
~ 41rn§1 T+ 201, exp ST'_E,Z‘, log(1 +2a,1,)
a.t 2\ —1/2
ezl
( n;v 142a,ty

1
-exp (S(e)+£2'c,v—§ Y log(1 +2a,,rN)>
nz1

1

172
~exp<S(a)——§ Y log(l+2a,,rN))P< Y a, §<ez>
n=1

nzN

N~—1
~TT 0200 72 ( 3 adi<s)

n=1 nxzN

N1 ~172
~( I1 2a,,> r;(N‘”/zP< Y a,,é,z,S82>

n=1 nz=N
where the first ~ and the third ~ are by Theorem 1, the second ~ is by

Lemma 6, the fourth ~ is by lim, ,,S(¢)=0 and the fifth follows since
Ty— 00 as £ 0. O

Corollary 4. For positive integer N, we have

logP(Z a,,é,z,<62>~logP<Z a,,éﬁ<£2> as e£—0

nzl nzN

Proof. It can be seen by noting that from Theorem 3

. 17 N—1
log P Y a,82<e )~ -3 Y log(2a,)— 3 log T,
n=1

nx1
+ logP< Y a, ﬁsez)

nzN

and from (3.7) and (3.8) in Section 3, log t, = o(log P(Y, . na,E2<e?).
|
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Corollary 5. For the independent coordinate /,-valued Brownian
motion, the rate of escape function will not change if we delete a finite
number of the coordinates.

Proof. 1t is easy to sée by Corollary 4 here and Theorem 2 of
Erickson.® O

3. THE ASYMPTOTIC BEHAVIOR

As mentioned in the Introduction, many authors have computed the
exact asymptotic behavior of P}, a,&2<¢?) for some particular a,,
Y,>1a,< oo and a,>0. Here we list some of the most important ones for
the use of our comparison results.

Hoffmann-Jorgensen et al.'® showed the following examples in their
Theorem 5.1 and 5.2:

Pz ([F]) e<e)

2

1
~ Zna"‘exp(—n—-;) as -0 (3.1)

P(2C[5) =)

2

i
~4 27[_3/286)([)(*“—"8—5) as ¢—-0

and

where [x] denotes the greatest integer function.
Zolotarev®® evaluated the following examples by modifying
Theorem 1. For a>1,

P( Z La éi< £2> ~ (zn)4(2——a) K4(1 _ 1/0()8 y4(2~a)/(m— 1)8(2-(1)/2(11— 1)

n=1 y V1)
- exp (—(a— l)K-(?) ) (3.2)

as ¢ >0 where K=Q2 'I(1—a ") I(1+a ')¥* " and y is the Euler
constant. The case a=2 of this result was noted by Anderson and
Darling'" and Sytaya."”’ Also

P(Z 1 2<82 ~eXp<--1—___zc_2_.l_logn) T_lexl’_)(—-sz) (33)
nz]e"“l n 16 12 2 4
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as ¢ - 0 where T'=log(1/2¢?) +loglog(1/2¢?) — L. Furthermore, it is not too
hard by using results in Zolotarev*? to get the following. For d> —1,

L ,
P(Z (n+d)2 §<82>~C48‘2"exp<—§—~£§) (3.4)

nz1 8

where C, is a constant.
For the multiple index case, Csaki”’ showed by using Theorem 1 that

-2 1
oxr (2 3 (=3) (1-3) ")
1 /1\? 1\?
~ —g;i(z> (log£—2> (35)

which is good enough for certain applications (see Remark 4).

For the rest of this section, we want to give a way of computing
log P(Y, 5, a,¢2<¢?) for a large class of a, by modifying Theorem 1. We
use it to compute an example that generalizes (3.5).

Theorem 4. If there exists a differentiable function h(x) on [4, o)
such that

d a 2a2
— - —_— X — 3.6
dx(z 1+2xa,,> "L Tazay 0w xow (36)

nz1l nzl

then
logP(Z a, ﬁ<£2)~ —(jyh(x)dx——yh(y)) as e¢—0
A

nxz1
where =3, ., a,/(1 +2ya,) and ¥, | a, < 0.

Proof. From Theorem 1 we have

a7\
]ogP< Y a,éi<e >~ —-log(4n)——log Y (—-———)

nz1i nzl1 1+2a"y

v a
JO "ZZZI 1 +2a,x dx (37)

+y Y

wop 1+ 2a,,y
Note that

}— —log(47r)——log y (——“”” )2‘

wat \ +2a,y

1
5 log(4n) + 3

log 3 a

nz1

+logy
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and
y
logy—o<v ”; 1 +2a,,y L Elr_‘-_%'—'a—n;dx> (3.8)
Hence we obtain
v
log F (nzz:l ansi <o ) v ,Z:l I+ 20,,}) L ,EI 1 +02"a,,x dx

~ ()= [ hx)

where the first ~ is by (3.7) and (3.8), the second ~ is by L’Hopital’s

rule. 0
Remark 2. Assuming (3.6) and using L’Hopital’s rule, we can see
that
gl= &n h(y) as y—© (3.9)
- n=1 1 + 2ya y y '

Thus in practice when we use Theorem 4, we use (3.9) to find a function
h(x) instead of (3.6) and then check that the function A(x) satisfies (3.6). In
general, the way to check that h(x) satisfies (3.6) is the same as the way to
find A(x) in (3.9). It is not clear that the A(x) in (3.9) always satisfies (3. 6),

but the examples we considered in this section have this property since 4,

is nice enough.

Remark 3. The result used to obtain (3.2), (3.3), and (3.4) in
Zolotarev?® gives more information, and is much more complicated than
Theorem 4. It is also notable that the result there is not suitable for the
multiple index case in general.

The lemma below provides the first step in finding the function A(x),
and the examples in this section demonstrate how everything works for
some special cases.

Lemma 7. If f:(0,00)— R, is an increasing function such that
f(n)=a;" and |7 (f(x))~l dx < oo, then for any constant 4 >0

o 1
2
= d
’ n§11+2ya L 2v+fn) L SIS

nz1l

as ¢—90 (3.10)

and

2a’ 1
Z 1+ 24, L PR

as ¢—0 (3.11)
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Proof. First observe that for ng+1> A =n,

D e |

>
S22+ ), 2v+f(X)

n+1

B S S S
4 y+f(x) 4 2Y+f(x)

1 o) 'n n0+1
2 _ -
¢ “Z 2~y+f(n)<,,oz+2J :2v+f( yxt L 2v+f(n)

@© 1 noz+l 1
<, 5774 L 517m

n=1

and hence (3.10) is true by the fact that for each k> 1

Y
3 0 as — 00
Ek 27+ f(n) Tl

Similarly, (3.11) holds. 0

Example 1. Let a,=(n+a)™% a>1, a> —1, and f(x)=(x+a)%
then from (3.10) we have the following:

1
=3y

s~ —_——dx
wor 1+2va, Ji 2y+(x+a)

® 1 ‘ -1
~-[0 2y+x“dx:(§)<sm g) @) t=he)  (3.12)

aj(a—1) 20/(a— 1)
p~2! (”/sm ) (1) (3.13)
o o4 &

It can be readily checked by (3.11) that A(x) = (m/a)(sin n/a) ' (2x)" —=)/=
satisfies (3.6); hence we have by Theorem 4 and (3.13) that

logP( Y (n+a)* ,2,<£2>

nz1

~— (E/sin E)(F (2x) % gy —5(29)C ~a)/a>
o o 0
= 20w ("/sm >(oc 1)y
o
af(a—-1) 2/(x—1)
~ =27 (oz——l)( /smE> <1>
o €

and hence
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The following example shows how to deal with multiple index cases.
‘The idea is try to use the estimates for one index less. Previously, Csaki'”
investigated a special case [see (3.5)] of the following example using
entirely different methods. His methods do not seem to generalize to all the
cases we consider.

Example 2. Let a,=(i+a)*(j+b) % a>p>1, and a> -1,
b> —1. As noted in Remark 2, we need to use (3.9) to find a function
h(x) and then check that the function h(x) satisfies (3.6). Since we are
considering the multiple index, Lemma 7 cannot be employed directly as
in Example 1. Hence we have to estimate the series in (3.9) in order to find
the function h{x).

For any positive integers iy > 1, jo> 1, we have

w oo dx dy al 1
+ —_———
j@+1~£‘0+12y+(x+a)“(y+b)” Z‘l j§,2y+a,;‘

1

<Y ¥ =Y Y ——

S S+ ivay G+b)f S S v +ay!

SI“’I"O dx dy ‘*'zivi » 1

o Y 21+ (x+a) (y+b0) S S 2 tay!

+ 120 Y ! (3.14)

1
j=1 is12y+ay

For m>1 and n>1, let

0 o dx dy
Hm," —_
wi (1) jm J 2+ (x+a) (y+b)

(7 [7 ——axd 3.15
e L (3.15)

Substituting x = y~#*(2y)"* s first, then y=(m+a)~** (2y)"" t*# into
(3.15), yields

H ()= (m+a)! = )"~ !

fee] a0 d
x | (z“/f’-zj d ;) dt  (3.16)
(m+ a)n + B (23) 7" ¢ b+

Case (i). If a=p, we obtain as y — oo that

860/5/1-2
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1
Hypm) =@t [ ;f s dr
~(2y)V8- J' f dsdt
= (2y) /B!
@ ( 0 l+sﬁ L IJ 1+s”det>
|
- 1781
(29) fo s
n n\~' 1
=(2 ”""—(sin—) log ~
7) A g5
—1
sin = (2y)" -~ 'logy=Cy"#~tlogy (3.17)
ﬁ2 B

by observing that [ /' [* (1+sf)"'dsdi<oo for the first ~ and
f507 ' f6(0+5")""dsdi<l for the second ~, where &=
(m+a)(n+b)(2y)~"# and C= (n/B?)- (sin n/B) =1 2!~ FVB,

Now note that (3.12) tells us that

1

> = 1/—1
El ,;1 27+ (i+a)f (j+b)ﬂ“0(3’ ) (3.18)
§ 2 : =op" ™) (3.19)

j=1i>1 2+ (i+a) (j+b)f
Hence from (3.14), (3.17), (3.18), and (3.19), we obtain

1
=Y

iz1 j§1 2+ (i+a)’ (j+b)

~ H'[;t’t;’()’) ~ C.Yl/liAl log y=h(y) (3.20)

By a similar argument, we can now check that h(x)= Cx"'~#" Jog x also
satisfies (3.6). Hence by Theorem 4 for h(x)= Cx""~#/#log x, we have as
e—0

logP( Y3 (i+a)”/’(j+b)ﬁffj<82)

izl j=1
~—n sin = J (2x)# =" log x dx —y(2y)"* ~'log y
lis B
—1
—[%<Sin%) 2V B —1)y"* logy (3.21)
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From (3.20), we have 2loge~ (' — 1)logy +loglogy~ (8"
which is

: 1
logy~2p(B—1)"" log ~
Hence &2~ 2CB(f—1) 1y~ log ¢!, which gives us

ﬂ )ﬁ/(ﬁ—l) lzﬁ/(ﬁ"ll 1/3/(13—1)
~(20-— - -
v ( BT (e ("’ge)

Putting (3.22) and (3.23) into (3.21) yields

logP(Z ) (i+a)’ﬂ(j+b)"’é,§<sz>

izl jz1

n/  m\-'\HE-D
~—{Z(sinZ QUB=1)(g _ 1)~ VB=1)
(ﬁ( ﬁ) ) #-b

1\2B-1 1\B/B=1D
(0 ()
€ £

Case (ii). If «> p, then (3.16) gives us

1
145

Hg ) ~ im0y~ gy eap [ (02 [
o\ 1
s o\ !
=(m+a) (2 )‘/”“‘—w(sin—)
( (2y = p\5"p
From (3.12), we have

Ty ‘

2 S+ ita (j+bY

~(5) () e £

and

Z Y 1 =0 ) =o0("*")

A S yH+ar (o)

Thus by (3.14), (3.25), and (3.26), we obtain

19

“1)103')’,

(3.22)

(3.23)

(3.24)

ds) dt

(3.25)

(3.26)

(3.27)
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) 1 ﬁ
L iram ap

i=1
Y & . T 1—1/B 1
< hvn-l' glf (ﬁ) <Sll'l ﬂ) @) zg:l jgl Zy+(i+a)* (j+b)f

. E - 1—1/8 1
<tm s (5 (S‘“ ﬁ) O L nE e GoP

¥y

(lo+14+a) —F

o 1 p —
< e LI (3.28)
SEwa g ot
Let i, — c0; we obtain
) L
S S+ (i+a) (j+b)

~2y)=1(Z)(sin 2 B Z—#— Dy"P='=h(y) (3.29)
7 ﬁ ﬁ ’>l(l+a)d/lf v i

where

p=2(5)sn5) " L e

By a similar argument as above, we can now check that i(x)= Dx!!~AV#
also satisfies (3.6). Now by Theorem 4 for A(x)= Dx"'~#V8 we have

logP(Z ) (i+a)’°‘(j+b)ﬂ€?,<sz)

izl j21

- (Jy DxU=BVE g D.y(l-—ﬁ)/li) = —D(f—1)y" (330)
0
And furthermore, from (3.29), we have

1\2818-1)
) (3.31)

y~DBB-D (2
&

Substituting (3.31) into (3.30) yields

logP(Z Y (i+a)~* (j+b)‘”éf,<ez)

izl jzl1

~ —(f—1)DFE-D (%)Mﬂ ! (3.32)
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Example 3. By looking at what we did in Example 2 and induction,
we can also obtain the following result for §>1 and a,> —1,n=1,2,.., d.

logP(Z ey (in'l'al)'ﬁ"'(fﬁ’ad)'ﬂfﬁ idsgz)

Hhz1 ig=1

~21 <____”___/Sm )ﬂ/w K (f—1)' -8B
d=Dp/ B

1\ /B=1) 1\d—DsB-1)
(@) ()
& €

where &, are iid. N(0, 1).

Remark 4. It follows from the Karhunen-Loéve expansion that the
following representation holds in distribution (see Kuelbs!'>)):

fjl Wis, tydsdi=Y Y (1——)_2<.j—1)¥2n"4‘f?}
0 Y0 izl j=21 2

where W(s, t) is standard Brownian sheet. Hence as a particular case of
(3.24) [also from (3.5)], we obtain

1 1
log P (L L W2(s, 1) ds di < 82)

-2
v (33 (=4)(-4) )
izl j=z1 2 7
! A% 1 Ly 3.33
“‘s?(z) ("g?) (3.33)

This estimate is related to the extension of Chung’s law of the iterated
logarithm for W(s, t) and can be used to show that if there exist a function
#(T) such that

lim sup |W(s,1?)|/¢(T)=constant as.

T 0<s5,t<T

then ¢(T) has to be bigger than T log log log T/(log log T)'?, which is the
best known lower bound for ¢(7) and is conjectured to be the right one.
The best known upper bound for #(T) is given by Bass,*) and is
T(log log log T)*?*/(log log T)">.
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4. LOWER TAIL OF SOME GAUSSIAN PROCESSES

We shall now demonstrate how to find the lower tail of some
Gaussian processes under the L,-norms by using our comparison results in
Section 2 and the examples in Section 3. More applications can be found in
Li,""”) where limit theorems are proved.

Let {U(t): —oo <t< oo} be the Ornstein-Uhlenbeck process, i.e., the
Gaussian process with mean zero and covariance function r(s, )=
E(U(s) U(t)) =exp(— |s—1]) for s,te(—o0, ). Then we have the
following.

Theorem 5. For —o0 <a<b< o0,

b
logP(J. U2(t)dz<sz)~ -

b—a)® 1
'(—Ta—)-; as ¢-0

Proof. By the Karhunen-Loéve expansion (see Ash and Gardner,®
Kac and Siegert!®), we have in distribution [PUX0ydt=Y,., 4,82,
where 4, are the eigenvalues of the equation

b
Af(z):j exp(— |s—1]) f(s)ds  a<t<b
We need to find the eigenvalues 4,. From the above equation, we obtain
t b
Af(t)=e"’f e’f(s)ds+e’f e f(s)ds ast<b (4.1)
and a pair of boundary condition is
b b
Af(a):e"j e*f(s) ds Af(b)=e*bj &f(s) ds (4.2)
Differentiating (4.1), we obtain
t b
A1) = —e—'f eff(s)ds+e'j e~ f(s)ds  a<i<b  (43)
and another pair of boundary condition is

A'(a)=e* j be”ff(s)ds Af'(b)= —e? j * (s) ds (4.4)
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Differentiating (4.3) again and combining the boundary conditions (4.2)
and (4.4), we have

M()=(4A=2)f(t) a<i<b
and 4.5)
flay=f"(a)  fb)=—f"(b)

From (4.5), we have
b b
G-2) [ faodi=a] fuo) 1 di
- A(r@rre | gora)

Hence 0<1<2. Let n=(247'—1)"?>0. We obtain f(1)=c,sinnr+
¢, cos nt where ¢, and ¢, are constants. Substituting this f(z) into the two
boundary conditions in (4.5) and simplifying them yields

¢,(sin na —n cos na) + c,(cos na+n sinna) =0
c,(sin nb +n cos nb) + c,(cos nb—n sinnb) =0

To find nontrivial constants ¢, and ¢,, ie., ¢} +¢3 #0, the determinant of
above equations has to be zero, that is,

2ncos(b—a)n=(n*>—1)sin(b—a)y (4.6)

Clearly (4.6) has a finite number of solution on bounded intervals and
has exactly one solution in [(kn —mn/2)/(b—a), (kn+n/2)/(b—a)] for
k >k, where k, is large enough. Let n, be the solution of (4.6) in
[(kn —n/2)/(b—a), (kn +m/2)/(b—a)] for k =k, [n, is not necessary the
kth solution of (4.6)]. We can see that 5, =kn/(b—a)+ O(k~') by using
the inequality tan x > x on (0, ©/2). Thus

kKb — -2
Ol A ] R PPy
k= ko r"‘+l

Hence we have by Theorem 2, Corollary 4, and Example 1 or (3.4), as
e—0
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b
log P (j U(t) dt <82>

a

=logP(Z lnfﬁ<£2)~logP( Y l,,»fi<£2)

nz1 nzng

2 2b—a)?
~logP( ~——-52<52)~10gP< ——~——-—62<82>
k§k0 ng+1°% kzzko k*n?

1 n? (b—a)® 1

P —a 4 e

This finishes the proof. O

Remark 5. If we want to find the asymptotic behavior of
P([5 U(1) dr <&?) as ¢ » 0 without log, we just need to count the number
of zeros of equation (4.6) on [0, (kom —7/2)/(b—a)] and use Theorem 3
instead of Corollary 4.

Let {B(1):0<:<1} be the Brownian bridge. We next consider a
weighted L,-norms for B(z).

Theorem 6. For «>0and f=1—a'<1,

P (fol BY1*) dt < 82) ( =P (L' tl—ﬁ Bt)dt < aez))

1
x ——) as ¢—-0

~ Cpgm E DR+ gy <_ E(cT-i—_l)—Z 3

where C, is a positive constant.

Proof. For a>0, {B(*): 0<1< 1} is a Gaussian process with mean
zero and covariance function r(s, 1) = E(B(s") B(t*)) = min(s*, 1*) — s*¢* for
s, te [0, 1]. Similar to what we did in the proof of Theorem 5. We need to
find the eigenvalues 1, of the equation Af(1)= for(s, t) f(s) ds, which is

(1) =(1 —z“)fo' sf(s) ds + 1° f’ (1—s%) f(s) ds (4.7)

with boundary condition f(0)=0 and f(1)=0. Differentiating (4.7), we
obtain Af'(1)=oar* " [! f(s) ds. Moving 1*~ ' to the left and differentiating
the equation yields

A (1) = Aa— 1) f'(1) + at*f(1) =0
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The general solution of this equation is (see Kambke,!"* page 440)

)= 1 e 2@+ 1) S/ t= D)
+ T s 2+ 1) 7 Jo/A 1)

where J,(x) is the Bessel function. Using the boundary condition f(0)=0
and f(1)=0, we have o+ 1(2(a+ 1)"' Ja/A)=0. Hence by the
asymptotic formula for zeros of the Bessel function (see Watson®”), we

have
2 \/Z—(n+ a1 +0 !
i "Ta@+n)” n>

which shows that

X

nz1

Thus by Theorem 2 and (3.4), we obtain

P (L: B (t*) dt < 82)

=p(z Mﬁgﬁ)

nzl1

4o a—1\72,,
"D“P(Z (a+1)2n2'("+4(a+1)) 5"“)

nzl

4o (n+ a—1 \"2 1 il <
wr)pe\"Taa+ ) 2 @

n

o 1

NCas-—(atwl)/z(a+I)ex e
P77 2@+

) as ¢—0

7

This completes our proof. O

5. THE SUP-NORMS AND THE /,-NORMS

We first study the relations between the two sup-norms g, gy
R” — [0’ OO], where qu('x) = Supnzl l‘xnl/an’ qb(x) =8UpP, . lxni/bn) and
(a,) and (b,) are given sequence of positive numbers.

Suppose qa(§)< o0 a.s. g,(¢)< oo as. and put

F()=Pql)<1)  Fyt)=Pg(&)<n =0
Cla)=inf{1>0| F,(1)>0}  C(b)=inf{r>0] Fy(1)>0}
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Theorem 7. If lim,_, ., a,/b,=1, then C(a)= C(b).
Proof. First observe that ‘

F =[] P, <ta,)=T] (1 - R(1a,))

nz1 nzl

where R(t)=(2/m)"? [ exp(—x%/2) dx. Hence F,(1)>0 iff ¥,., R(ta,)
<o, and, using the inequality as in Hoffmann-Jorgensen et al.,(®

Crexp(—12)/(1 + 1)< R(1) < Cyexp(—132)/(1 +1)  t>0

for some finite positive constants C, and C,, we see that F,(1)>0iff
Y exp(—1r2a2/2)/(1 + ta,) < oo (5.1)
nz1

Now (5.1) converges for all ¢ > § iff

Y exp(—r2a%2)<w  for every 1>8
nzl

Hence we have

C(a)=inf{t>0

Y. exp(—1%a%/2) < oo}

nzl

Y. exp(—1?h2)2) < oo}

nzl

C(b)=inf{t>0

Now for any &> 0, there exists N such that (b,/a,)>>1—2"'¢%/(C(a) + g)?
for n= N. Hence

Y exp(—(C(a)+¢)? b2)
nzl

N

= ) exp(—(Cla)+¢)? b2)+ 2. exp(—(C(a) +¢)? a2(b,/a,)?)
n=1 n>N
<N+ Y exp(—(C(a)+¢)* al(1 — 27 "e¥/(C(a) + £)2))

n>N

2
SN+ Y exp(~—(C(a)+§-> a,z,)<oo

n>N
Thus C(a)> C(b). And C(a)= C(b) by symmetry. ]

In Hoffmann-Jgrgensen et al,""® it is shown that if C(a)>0, then
F,(t) can have a jump of any size in [0, 1) at C(a). Our next result shows
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that if {a,) and (b,) are fairly close, then F,(1) and F(1) will jump at the
same point.

Theorem 8. If ¥,., |l —a,/b,l < ©, then F(C(a)) = 0 iff
F(C(b))=0.
Proof. First observe that, for >0,

a ta, thy
min (1, —'1) <J exp(—x?/2) dx/f exp(—x?/2) dx
b 0 0

n

< max (1,%) (52)

and  0<TL,.,min(1,a,/b,)<Il.>: max(l, a,/b,)<co. Now from
Theorem 7, we have C(a)= C(b) and therefore, for t > C(a) = C(b),

F =11 %f " exp(—x%/2) dx >0
0

nzl

2 th,
Fn=1T1 ;j exp(—x%/2) dx >0
0

Hence for 1> C(a) = C(b),
F(0)/Fp(1)

2 tan 2 th
(n j% " expl—x2) dx) / (H ﬁ [ exp(=x72) dx>

ﬂ (JM" exp(—x2/2) dx/jrb" exp(—x?/2) dx)
0 0

nzl

and by (5.2)

Il min(l,%)sFu(r)/Fb(r)s Il maX(l,Z—”)

nzl1 nzl

Note that F,(r) and F,(r) are absolutely continuous for 1> C{a)= C(b)
(see Hoffmann-Jgrgensen et al.!'”). Letting t —> C(a) = C(b) from the right,
we obtain F,(C(a))=0 if and only if F(C(b))=0. Ol

The next result tells us when F,(¢) and F,(t) have the same order of
magnitude as t — 0 provided C(a)= C(b)y=0.
Theorem 9. If Y, ., |1 —a,/b,| <o and C(a)=C(b)=0, then
lim F(0/F0)= T[] au/b,

nz1
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Proof. Following the proof of Theorem 8 and noting that by
L’Hopital’s rule, we have

tan

th,
lim [ exp(—x2/2)dx / j exp(—x%/2) dx
0 0

>0+
— im @ exp(—aﬁt2/2)_&
o b,exp(—b2172) b,
Hence by the D.C.T. for [T, (J§™ exp(—x%/2) dx/[" exp( — x%/2) dx), we
conclude the result. 0

Corollary 6. If Z,,>, [1—a,/b,| I, <, (n)< 0, Cla)=C(b)=0 and
F(1)/Fy(t) exists and is not equal to zero as 1 — 0+, then

)

nz1

|G

<o  and lim F()/Fy(t)=[] a,./b,
150t

n nzl1

Proof. The proof of Corollary 6 is similar to Corollary 3 with
Remark 1 also being applied here. O

Motivated by the comparison results for the l,-norms and the
sup-norms, we consider the /,-norms where 1 < p < 0.

Proposition 1. For any positive integer N

~

N N N a —1i/p
nn%p(z anwnvsep)/P(Z b,,15"|"<af’)=(ﬂ ,;’-’)
& n=1 n=1 n=1%n

Proof. Let

N

n=1

We have

N
P(Z a,.|fnv'<s")

=1
i/p

=(2n)" N/z(]—] )

; ~1p
~Q2n)~ N/z(n ) ENJ ldx as ¢-0*

By, 4

eN'[ cxp(— = Z £2a‘2/”) dx

Bw,p n—l

Hence the claim follows. Od
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Proposition 2. If a,zb,and 3,5, |1 —a,/b,| <0, then

a —1/p
(n if) sP(Z a,,lé,,v'se")/P(z b,,ié,,vsep)sl

nzt1Yn nzl nz1

Proof. For any positive integer m, we have

P( Y an |C,.|”<£”><P( Y b, {én|”<g">

nxz1 nxzl
and
m 1/p m
(1] ) »(3 a e <o)
n=1 n=1
1 m
=(2n)‘"”zj-~f ew(— 5 2 yia;””) dy, Ay,
Yo yalf <ef 2n=l
—m/2 1 & 2p -2/,
> (2m) =" jf exp| —5 X yab, ) dyydym
S LyalP <6 2,2
m i/p m
~(T1 b,) (% b1 <o)
n=1 n=1
Hence
m.o g - 1/p m m
(n ;f) <P(>: a,,lé,,l”<8”>/P<Z bn|<,,v<s")<1
n=1%n n=1 n=1
Let m — oo, and we obtain desired result. O

Now we state some conjectures and open problems that arise from this
work.

(i) We conjecture that if 3,5 |1 —a,/b,| < oo, then for 1 < p<o0

o\~ P
lim P<Z a”|§”|”<8”)/1"(2 bnl€n1”<6”>=<ﬂ f)

e—0
nzl nzl nzln

(i) We conjecture that for some positive constant C,

P(Z a,,éﬁ$82>~CP(Z b,,éf,ssz) as ¢—0

nzl nztl

if and only if [T, , a./b, exists and C=(IT,>14./b,)" 12
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Note that this conjecture is true by Corollary 3 if we assume

Z “ _an/bn! I{a,,sb,,}(n) <o

nz1

Also the two examples in Remark 1 are covered in this conjecture. If this
conjecture is true, the we can ask whether it is true for the [,-norms as
in (i). .

(iii) We can ask under what conditions on a, and b, does it follow
that :

logP(Z a,,lﬁ,,lp<£”>~ClogP<Z b,,lf,,l”sg”) as e¢-0
nz1 nx1 (5.3)

where C is a positive constant and 1< p < .

This type of result will tell us more about the tail behavior of the
l,-norms and help us to find the rate of escape function. Our Corollary 4
gives that if b,=a,,, », then (5.3) is true for p=2and C=1.

(iv) We conjecture that if b, =a, +n> then (53)is true for 1< p< oo
and C=1.
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