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Abstract

A biased coin is tossed n times independently and sequentially. A “head” switch is
a tail followed by a head and a “tail” switch is a head followed by a tail. Joint Laplace
transform for the number of “head” switches and “tail” switches are given. For the
total number of switches, the central limit theorem and the large deviation principle
are established.

1 Introduction

The following question was posed by Anush (2012) at mathoverflow, asking for bounds for
number of coin toss switches: “I toss n biased coins and I want to count the number of times
you get a H followed by a T or a T followed by a H. I call these switches. So for example if
I get HHTTHTHHHT then I have 5 switches in total. If the coin gives H with probability
p and T with probability 1 − p then how can you find an approximation to the probability
of getting at least k switches for large n? I would also be interested in a Chernoff style tail
bound.”

Let Sn denote the number of switches. As it is pointed out in Anush (2012) that adjacent
switch occurrences are not independent however non-adjacent ones are. And the probability
of having a switch at position i+ 1 given that there is a switch at position i is exactly 1/2,
irrespective of p. The mean number of switches is ESn = (n − 1)2pq and the variance is
Var(Sn) = 2pq(2n− 3− 2pq(3n− 5)) where q = (1− p). The exact probability distribution
for Sn was given by Joriki (2012). Namely

P(Sn = 2l − 1) = 2
n−l∑
j=l

(
j − 1

l − 1

)(
n− j − 1

l − 1

)
pj(1− p)n−j,
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for 1 ≤ l ≤ bn/2c, and

P(Sn = 2l) =
n−l−1∑
j=l

(
j − 1

l − 1

)(
n− j − 1

l

)(
pj(1− p)n−j + pn−j(1− p)j

)
,

for 0 ≤ l ≤ b(n − 1)/2c. Ori Gurel-Gurevich pointed out in mathoverflow that a Chernoff
style bound can be given easily by considering the “even” and “odd” switches separately.
The number of even (odd) switches is binomially distributed and one can use union bound
and lose at most a factor of 2 in the bound. However, this is one-sided and not sharp,
see remarks after Theorem 2. Ofir also mentioned that one may try recursively compute
f(n, k, p), the probability that during n tosses there are exactly k switches and that the last
result is H, by using f(n + 1, k, p) = p(f(n, k, p) + f(n, k − 1, 1 − p)) with f(n, 0, p) = pn.
Our approach is different and treat the last flip together with the rest.

The main propose of this note is finding explicitly the generating function or Laplace
transform E eλSn , E eλSn(H) and E eλSn(T ), where Sn = Sn(H) + Sn(T ), Sn(H) is the number
of “head” switches from T to H and Sn(T ) is the number of “tail” switches from H to T .
The crucial observation is the representations

Sn(H) =
n∑
i=2

(1− εi−1)εi and Sn(T ) =
n∑
i=2

εi−1(1− εi) (1.1)

where εi are i.i.d and P(εi = 1) = p,P(εi = 0) = 1 − p = q. Our detailed analysis of using
two related generating functions is motivated from an analytic argument by the author a few
years ago to the following neat fact mentioned by Persi Diaconis: For independent random
variables Xi with P(Xi = 1) = 1/i = 1− P(Xi = 0), i ≥ 1,

∞∑
j=1

XjXj+1 =d Poisson(1). (1.2)

We include an outline of the proof for the above fact in Section 2 after the proof of the
following main result of this note.

Theorem 1 For any λ, η ∈ R, the joint Laplace transform

E eλSn(H)+ηSn(T ) =
1

2

(
1 +

1− 4pq + 2pq(eλ + eη)√
1− 4pq + 4pqeλ+η

)
rn−11

+
1

2

(
1− 1− 4pq + 2pq(eλ + eη)√

1− 4pq + 4pqeλ+η

)
rn−12 (1.3)

where

r1,2 =
1

2
(1±

√
(1− 4pq) + 4pqeλ+η). (1.4)
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We need several remarks. First note that r22 < r21 (r1 is defined with the positive sign and
r2 negative) and so the dominating term in (1.3) is rn1 . Second, our technique used in the proof
also allow us to find the joint Laplace transform for Sn(HH), Sn(HT ) = Sn(T ), Sn(TH) =
Sn(H), Sn(TT ) where Sn(F1F2) denote the number of consecutive pattens F1F2 in the first
n flips, with Fi ∈ {H,T}. Indeed, one could obtain joint Laplace transform for 2k correlated
variables {Sn(F1 · · ·Fk) : Fi ∈ {H,T}, 1 ≤ i ≤ k} for any fixed k ≥ 2. But we will not
consider these generalizations in this note. Third, it follows from (1.3) that Sn(H) =d Sn(T )
in distribution. We can also find easily from Theorem 1 or its proof in Section 2 that
ESn(H) = ESn(T ) = pq(n− 1) ∼ pqn,

Var(Sn(H)) = Var(Sn(T )) = pq(1− 3pq)n− pq(1− 5pq) ∼ pq(1− 3pq)n, (1.5)

and
Cov(Sn(H), Sn(T )) = pq(1− 3pq)n− pq(2− 5pq) ∼ pq(1− 3pq)n. (1.6)

Next, to obtain useful information about numbers of various types of switches, we have
the following CLTs and deviation estimates.

Theorem 2 For 0 < p < 1, as n→∞, we have the joint CLT(
Sn(H)− pqn√
pq(1− 3pq)n

,
Sn(T )− pqn√
pq(1− 3pq)n

)
⇒ N

(
(0, 0);

(
1 1
1 1

))
(1.7)

and as a consequence for Sn = Sn(H) + Sn(T ),

Sn − 2pqn√
4pq(1− 3pq)n

⇒ N(0, 1). (1.8)

In addition, the large deviation principle holds for Sn/n with convex rate function

Λ∗(θ) =
θ

2
log

(
2θ(1− 4pq)√

θ2 + 4(1− θ)(1− 4pq)− 4pqθ − (1− 4pq)(2− θ)

)

+ log

(
2− θ −

√
θ2 + 4(1− θ)(1− 4pq)

4pq

)
, 0 < θ < 1,

and Λ∗(θ) =∞ otherwise.

Note that in particular, we have for ρ > 2pq,

lim
n→∞

1

n
logP(Sn ≥ ρn) = −Λ∗(ρ),

and for 0 < ρ < 2pq

lim
n→∞

1

n
logP(Sn ≤ ρn) = −Λ∗(ρ).
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As pointed out by Ori Gurel-Gurevich mentioned earlier, a Chernoff style bound can be given
easily by considering the “even” and “odd” switches separately. However, this is one-sided
and not sharp in comparison with estimates above.

The remaining of this note is organized as follows. The joint Laplace transforms for
numbers of head and tail switches are given in section 2 with the help of two related gener-
ating functions. Similar idea is used to establish (1.2) at the end of section 2. The proof of
Theorem 2 for CLT and large deviation principle are given in section 3.

2 Joint Transforms for Head and Tail Switches

Using notations and representations (1.1) in the introduction, We have by conditioning on
εn for n ≥ 2, the joint Laplace transform

E eλSn(H)+ηSn(T ) = pE eλSn−1(H)+ηSn−1(T )+λ(1−εn−1) + qE eλSn−1(H)+ηSn−1(T )+ηεn−1

= pan−1(λ, η) + qbn−1(λ, η). (2.9)

Here a0(λ, η) = 1, a1(λ, η) = p+ qeλ,

an(λ, η) := E eλSn(H)+ηSn(T )+λ(1−εn)

= pE eλSn−1+λ(1−εn−1)+ηSn−1(T ) + qeλE eλSn−1(H)+ηSn−1(T )+ηεn−1

= pan−1(λ, η) + qeλbn−1(λ, η), n ≥ 1 (2.10)

and similarly, b0(λ) = 1, b1(λ, η) = peη + q,

bn(λ, η) := E eλSn(H)+ηSn(T )+ηεn

= peηan−1(λ, η) + qbn−1(λ, η), n ≥ 1. (2.11)

Consider generating functions

Aλ,η(x) :=
∑
n≥0

an(λ, η)xn, Bλ,η(x) :=
∑
n≥0

bn(λ, η)xn.

Then from (2.10) and (2.11),

Aλ,η(x) = 1 + px
∑
n≥1

an−1x
n−1 + qeλx

∑
n≥1

bn−1x
n−1

= 1 + pxAλ,η(x) + qeλxBλ,η(x),

Bλ,η(x) = 1 + peλx
∑
n≥1

an−1x
n−1 + qx

∑
n≥1

bn−1x
n−1

= 1 + peλxAλ,η(x) + qxBλ,η(x).

Solving the above system of equations above and we see

Aλ,η(x) =
∑
n≥0

an(λ, η)xn =
1 + q(eλ − 1)x

1− x− pq(eλ+η − 1)x2
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and (also by symmetry)

Bλ,η(x) =
∑
n≥0

bn(λ, η)xn =
1 + p(eη − 1)x

1− x− pq(eλ+η − 1)x2
.

Thus we find by partial fraction,

Aλ,η(x) =
1 + q(eλ − 1)x

1− x− pq(e2λ − 1)x2
=

C1

1− r1x
+

C2

1− r2x
(2.12)

where r1 and r2 are defined in (1.4), and

C1,2 =
1

2

(
1± 1− 2q + 2qeλ√

(1− 4pq) + 4pqeλ+η

)
. (2.13)

Thus we have from (2.12)
an(λ, η) = C1r

n
1 + C2r

n
2

and by symmetry (exchange p and q, λ and η)

bn(λ, η) =
1

2

(
1 +

1− 2p+ 2peη√
(1− 4pq) + 4pqeλ+η

)
rn1 +

1

2

(
1− 1− 2p+ 2peη√

(1− 4pq) + 4pqeλ+η

)
rn2 .

Substituting into (2.9), we obtain (1.3) and finish the proof of Theorem 1. �
As mentioned in the introduction, our technique used above allow us to find the joint

Laplace transform for Sn(HH), Sn(HT ) = Sn(T ), Sn(TH) = Sn(H), Sn(TT ) where Sn(F1F2)
denote the number of consecutive patterns F1F2 in the first n flips, with Fi ∈ {H,T}.
However, we will not do it in this note and instead we prefer to show (1.2) here. To see a
formal connection with (1.2), we note that the number of non-switches can be represented
as

Sn(HH) =
n∑
i=2

εi−1εi and Sn(TT ) =
n∑
i=2

(1− εi−1)(1− εi). (2.14)

Define for independent Xi, i ≥ 1

Tn =
n∑
j=1

XjXj+1, with P(Xi = 1) = 1/i = 1− P(Xi = 0).

Then by conditioning, the characteristic function

φn(t) = E eitTn = P(Xn+1 = 0) · φn−1(t) + P(Xn+1 = 1) · E (eitTn|Xn+1 = 1)

= P(Xn+1 = 0) · φn−1(t) + P(Xn+1 = 1) · gn(t)
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where

gn(t) = E (eitTn|Xn+1 = 1)

= P(Xn = 0) · E (eitTn|Xn = 0, Xn+1 = 1) + P(Xn = 1) · E (eitTn|Xn = Xn+1 = 1)

= P(Xn = 0) · φn−2(t) + P(Xn = 1) · eit · gn−1(t).

Thus we have two recursive function relations:

gn(t) = (n+ 1)φn(t)− nφn−1(t)

gn(t) =
eit

n
gn−1(t) +

n− 1

n
φn−2(t)

Substituting the first one into the second one, we have

φn(t) = φn−1(t) +
a

n+ 1
φn−1 −

(n− 1)a

n(n+ 1)
φn−2

with a = eit − 1 and the initial condition

φ1 =
1

2
+

1

2
eit = 1 +

1

2
a

φ2 =
1

2
+

1

3
eit +

1

6
e2it = 1 +

2

3
a+

1

6
a2.

It can be easily proved by mathematical induction that

φn = 1 +
n∑
k=1

(
1

k!
− 1

(n+ 1)(k − 1)!

)
ak.

Taking n→∞, we obtain
φn(t) = E eitTn → ea = ee

it−1

which proves (1.2). �

3 Proof of Theorem 2

From the key representation (1.1), we see easily ESn(H) = ESn(T ) = pq(n− 1) ∼ pqn and

Var(Sn(H)) = E (Sn(H)− ESn(H))2

=
n∑
i=2

E (εi − εi−1εi − pq)2 + 2
n−1∑
i=2

E (εi − εi−1εi − pq)(εi+1 − εiεi+1 − pq)

= pq(1− pq)(n− 1)− 2p2q2(n− 2)

= pq(1− 3pq)n− pq(1− 5qp) ∼ pq(1− 3pq)n.
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Similarly, we have (1.5) and (1.6). Thus from Theorem 1, for any λ, η > 0, as n→∞,

Ψn(λ, η) = E exp

(
λ
Sn(H)− ESn(H)√

Var(Sn(H))
+ η

Sn(T )− ESn(T )√
Var(Sn(T ))

)

= E exp

(
λ
Sn(H)− pqn√
pq(1− 3pq)n

+ η
Sn(T )− pqn√
pq(1− 3pq)n

+ o(1)

)

= exp

(
n log

1

2
(1 +

√
∆)− (λ+ η)pq

√
n√

pq(1− 3pq)
+ o(1)

)
(3.15)

where from (1.4),

∆ = (1− 4pq) + 4pq exp
(

(λ+ η)/
√
pq(1− 3pq)n

)
.

Note that as n→∞,

∆− 1 = 4pq
(

exp
(

(λ+ η)/
√
pq(1− 3pq)n

)
− 1
)

=
4pq(λ+ η)√
pq(1− 3pq)n

+
2(λ+ η)2

(1− 3pq)n
+ o(

1

n
).

Hence as n→∞

1

2
(1 +

√
∆) = 1 +

1

4
(∆− 1)− 1

16
(∆− 1)2 + o(

1

n
)

= 1 +
pq(λ+ η)√
pq(1− 3pq)n

+
(1− 2pq)(λ+ η)2

2(1− 3pq)n
+ o(

1

n
)

and

log
1

2
(1 +

√
∆) =

pq(λ+ η)√
pq(1− 3pq)n

+
(1− 2pq)(λ+ η)2

2(1− 3pq)n
+

1

2
· pq(λ+ η)2

(1− 3pq)n
+ o(

1

n
)

=
pq(λ+ η)√
pq(1− 3pq)n

+
(λ+ η)2

2n
+ o(

1

n
). (3.16)

Combining (3.15) and (3.16), we obtain

Ψn(λ, η) = E exp

(
λ
Sn(H)− ESn(H)√

Var(Sn(H))
+ η

Sn(T )− ESn(T )√
Var(Sn(T ))

)
∼ eλ

2/2, as n→∞,

which implies the joint CLT in Theorem 2.
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For the large deviation principle, we need to compute the logarithmic generating function
for Sn = Sn(H) + Sn(T ). From Theorem 1 with η = λ, the logarithmic generating function
for Sn is

Λ(λ) = lim
n→∞

1

n
logE exp(λSn) = log r1

= − log 2 + log
(

1 +
√

1− 4pq + 4pqe2λ
)

and the associated Fenchel-Legendre transform of Λ(λ) is

Λ∗(θ) = sup
λ∈R

(θλ− Λ(λ)) .

Since 0 < Λ′(λ) < 1, we see Λ∗(θ) =∞ for θ /∈ (0, 1). For 0 < θ < 1, we set λθ such that

θ = Λ′(λθ) =
4pqe2λθ

1− 4pq + 4pqe2λθ +
√

1− 4pq + 4pqe2λθ
.

Then solving the resulting quadratic equation, we find√
1− 4pq + 4pqe2λθ =

θ +
√
θ2 + 4(1− θ)(1− 4pq)

2(1− θ)

= 2(1− 4pq)
(√

θ2 + 4(1− θ)(1− 4pq)− θ
)−1

.

Thus for 0 < θ < 1, by substituting λθ from the equation above,

Λ∗(θ) = θλθ − Λ(λθ) (3.17)

=
θ

2
log

(
2θ(1− 4pq)√

θ2 + 4(1− θ)(1− 4pq)− 4pqθ − (1− 4pq)(2− θ)

)

+ log

(
2− θ −

√
θ2 + 4(1− θ)(1− 4pq)

4pq

)
. (3.18)

Note that Λ∗(2pq) = 0 as it should be. By the Gartner-Ellis theorem, see [2], the large
deviation principle holds for Sn/n with rate function Λ∗(θ) since Λ(λ) exist for all λ ∈ R
and is essentially smooth. In particular, we have for ρ > 2pq,

lim
n→∞

1

n
logP(Sn ≥ ρn) = − inf

θ≥ρ
Λ∗(θ) = −Λ∗(ρ),

and for 0 < ρ < 2pq

lim
n→∞

1

n
logP(Sn ≤ ρn) = − inf

θ≤ρ
Λ∗(θ) = −Λ∗(ρ).

Finally, it is also easy to check from (3.18) that

lim
p→1/2

Λ∗(θ) = θ log(2θ) + (1− θ) log(2(1− θ))

which is the rate function for binomial random variable Sn when p = 1/2.
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