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Abstract

Abstract: The probability that a random polynomial of degree n with i.i.d expo-
nentially distributed coefficients has all real zeros is

P(All zeros are real) = E
∏

1≤j<k≤n
|Uj − Uk| =

(
n−1∏
k=1

(
2k + 1

k

))−1

where Ui are i.i.d uniform on the interval [0, 1]. The second identity is a form of Selberg
integral with simplification. Our evaluation of the probability starts with a formula of
Zaporozhets (2004) which is based on an integral geometry representation developed
by Edelman and Kostlan (1995) and tools from differential geometry.
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1 Introduction

There is a long history on the study of zeros of a random polynomial whose coefficients are
independent, identically distributed, non-degenerate random variables. Various questions
regarding the distribution of the number of real zeros were studied in late 30’s by Littlewood
and Offord and then significant progress was made by Kac in the 40’s, where the main result
is that the expected number of zeros of a degree n polynomial with independent standard
Gaussian coefficients is found explicitly as a single integral and asymptotically equivalent to
2 log n for large n. There has since been a huge amount of work on various aspects of the
distribution of the zeros of random polynomials and systems of random polynomials for a
wide range of models with coefficients that are possibly dependent and have distributions
other than Gaussian. As pointed out by Evans [E06], it is impossible to survey this work
adequately, but some of the more commonly cited early papers, reviews of the literature
and the level of sophistication achieved in terms of results and methodology are provided in
[EK95], [DPSZ02], [E06] and [LW09]. Here we only briefly overview results of probability
estimates of rare events associated with the number of real zeros.

Consider the random polynomial of degree n

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (1.1)

with independent and identically distributed coefficients, and denote by Nn the number of
real zeros of Pn(x). In a series of papers [LO38],[LO39], [LO43], Littlewood and Offord proved
that if the ai are all uniform on (−1, 1), or all normal N(0, 1), or all Rademacher/uniform
on {−1, 1}, i.e. P(ai = ±1) = 1/2, then

P
(
Nn > 25(log n)2

)
≤ 12 log n

n
and P

(
Nn <

c log n

(log log n)2

)
≤ C

log n

for some positive constants c and C. Years later, see e.g. [IM71] and [M74], it was shown that
ENn ∼ (2/π) log n and Var(Nn) ∼ (4/π)(1 − 2/π) log n. They together imply, as pointed
out in [DPSZ02], lim supn→∞ log n ·P(Nn ≤ 1) ≤ π−2. The bound has the same form as the
above mentioned work of Littlewood and Offord, but the constant has been made explicit.
The small value probability of P(Nn ≤ (1 − δ)ENn) for fixed 0 < δ < 1 is still an open
question. However, a significant breakthrough was made in [DPSZ02] for nondegenerate
i.i.d coefficients having zero mean and finite moments of all orders. They showed that the
probability of exactly k real zeros is n−b+o(1) as n→∞ through integers of the same parity
as the fixed integer k ≥ 0. In particular, the probability that a random polynomial of large
even degree n has no real zeros is n−b+o(1). The finite, positive constant b depends neither
on k nor upon the specific law of the coefficients, and is characterized via the centered,
stationary Gaussian process of correlation function sech(t/2). Their numerical simulations
for degree n ≤ 210 suggest b ≈ 0.76± 0.03. In recent updated work of Aurzada, Li and Shao
[ALS11+], a new representation for b in terms of the limiting one-sided exit exponent of
iterated integrated Brownian motion is given and in particular the best theoretical bounds
for the so called positivity exponent b is 0.5 < b < 1.

In this note, the main goal is to consider the probability of the largest possible value of
Nn or smallest possible number of complex zeros. Our main result is the following explicit



1 INTRODUCTION 3

evaluation.

Theorem: Assume the coefficients of a random polynomial of degree n are independent
and exponentially distributed with rate one. Then the probability of all real zeros or no
complex roots is given by

pen = P(All zeros are real) = E
∏

1≤j<k≤n

|Uj − Uk| =

(
n−1∏
k=1

(
2k + 1

k

))−1
(1.2)

where Ui are i.i.d uniform on the interval [0, 1]. In particular, we have

pe1 = 1, pe2 =
1

3
, pe3 =

1

30
, pe4 =

1

1050
pe5 =

1

132300
, pe6 =

1

488980800

and asymptotically as n→∞,

logP(Nn = n) = − log 2 · n2 +
1

2
n log n+

1

2
(log π − 1)n+

3

8
log n

+
1

24
(7 log 2 + 12 log π) +

3

2

(
1

12
− logA

)
+ o(1) (1.3)

where A is the Glaisher-Kinkelin constant in the asymptotic formula for the Barnes G-
function.

We need several remarks. Our evaluation of the probability starts with a formula of Za-
porozhets [Z04] which is based on an integral geometry representation developed by Edelman
and Kostlan (1995) and tools from differential geometry; see Section 2 for precise statements.
The most important observation is that one can compute everything explicitly in the expo-
nential setting. While the Gaussian case seems difficult and remains unresolved, our efforts
on that version of the problem led to the realization that the technical details would be
relatively simple for the exponential case. The second identity in (1.2) is a form of Sel-
berg integral with simplification, see again Section 2 for more details. As far as this author
knows, no explicit computation for i.i.d coefficient random variables with unbounded sup-
port is known before this note. Of course, one can also consider the natural generalization
of the exponential distribution to Gamma distributions. This does encounter some minor
difficulties and we will not pursue that direction in this paper. A more natural question
under consideration is the computation of the explicit distribution of Nn under an i.i.d ex-
ponential ensemble. In particular, we hope to find the positivity exponent b via expression
for P(Nn = 0) for n even. Another interesting question under consideration is the limiting
measure of the empirical distribution of all real zeros, given that they are all real. Note also
that in the case of so called reciprocal polynomials, a result similar to that of [Z04] is given
by Farmer, Mezzadri and Snaith [FMS06] related to L-functions.

When the coefficients have a bounded support away from the origin, Devlin, Li, Xu and
Yao [DLXY11+] proved that the probability of all real zeros is zero for all n ≥ n0 + 1, where
n0 is given explicitly. In particular, for all coefficients with support {1, 2, · · ·m},

n0 = max{k : Pk 6= 0} = max{l :

(
l

[(l + 1)/2]

)
≤ m}.
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This bound can be achieved by (x + 1)l. For the support set {−1,+1}, one can see n0 = 3
which turns out to be the Putnam competition problem A6 from 1968. The author found this
out well after detailed studies in the project [DLXY11+]. Note that all these are basically
deterministic results. When the coefficients are i.i.d geometric distributed, it is easy to
provide non trivial bounds for the probability of all real zeros but we could not find a nice
general formula.

Finally we mention the fact that the probability that a random real Gaussian matrix
has k real eigenvalues is studied by Edelman [E97]. In particular, the probability that
all eigenvalues are real is 2−n(n−1)/4. Interesting enough, the probability for exactly k real
eigenvalues is not as explicit as one would like to see, even though certain improvement
is possible and under current investigation. Similar phenomenons also occurred in the very
recent work of Bergqvist and Forrester [BF11] on rank probabilities for real random N×N×2
tensors. As an application, they provided the exact evaluation of the probability that all
eigenvalues are real for random matrices A−1B where A and B are real Gaussian matrices.

The rest of the paper is organized in the following way. Section 2 provides notations and
statements of two important results that we need. One is the formula of Zaporozhets [Z04]
and the other is the well-known formula of Selberg’s integral. In Section 3, we compute the
probability and prove the theorem.

Acknowledgement: The author would like to thank Dr. Dmitry Zaporozhets for useful
discussions and the referee for valuable suggestions.

2 Notations and Preliminaries

Before we sate the main result of D. Zaporozhets [Z04], let us introduce the following notation
for the elementary symmetric polynomials:

σ0(y1, · · · , yn) = 1,

σ1(y1, · · · , yn) = y1 + · · ·+ yn,

σ2(y1, · · · , yn) = y1y2 + · · ·+ yn−1yn,

σ3(y1, · · · , yn) = y1y2y3 + · · ·+ yn−2yn−1yn,
... (2.4)

σn−1(y1, · · · , yn) = y1y2 · · · yn−1 + · · ·+ y2y3 · · · yn,
σn(y1, · · · , yn) = y1y2 · · · yn;

and denote the Vandermonde determinant by

∆(y1, · · · , yn) =
∏

1≤i<j≤n

|yi − yj|. (2.5)
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Theorem [Z04]: Assume that the coefficients in (1.1) have a joint density p(a0, · · · , an).
Then the distribution of the number Nn of real zeros is given by

P(Nn = n− 2k)

=
2k

k!(n− 2k)!

∫
Rn−2k

dx1 · · · dxn−2k
∫
Rk
+

dr1 · · · drk
∫
[0,π]k

dα1 · · · dαk
∫
R
daφ(a;x, α, r)

for 0 ≤ k ≤ n/2, where

x = (x1, · · · , xn−2k),
r = (r1, · · · , rk),
α = (α1, · · · , αk),

φ(a;x, α, r) = r1 · · · rkp(aσ0, aσ1, · · · , aσn)|an∆|, (2.6)

and

σj = σj(x1, · · · , xn−2k, r1eiα1 , r1e
−iσ1 , · · · , rkeiσk , rke−iαk), (2.7)

∆ = ∆(x1, · · · , xn−2k, r1eiα1 , r1e
−iσ1 , · · · , rkeiσk , rke−iαk). (2.8)

The basic approach of the proof in [Z04] starts with the integral geometry representation
of Kac’s formula and its various generalizations that is developed by Edelman and Kostlan
[EK95]. Their remarkable interrelation between the theory of random polynomials and
integral geometry is then extended in [Z04] to obtain the probability distribution of the
number of real zeros of a random polynomial, by using tools from differential geometry. A
similar argument is also used to derive a formula for the expected number of complex zeros
lying in a given domain of the complex plane. However, no explicit example with absolute
continuous density for i.i.d coefficient random variables is known after the work of [Z04] until
this note.

Next we state the Selberg Integral, an n-dimensional generalization of the Euler beta
integral,

Sn(α, β, γ) =

∫ 1

0

· · ·
∫ 1

0

n∏
i=1

tα−1i (1− ti)β−1
∏

1≤i<j≤n

|tj − ti|2γ dt1 · · · dtn

=
n−1∏
j=0

Γ(α + jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)

Γ(α + β + (n+ j − 1)γ)Γ(1 + γ)

For interesting history of its sudden rise to prominence and fundamental role in various parts
of mathematics, such as random matrix theory, Forrester and Warnaar [FW08] provided an
excellent overview. For several proofs and far reaching generalizations, see also [AAR99] and
[F10] for details. We will only use the case α = β = 1 and γ = 1/2 in Section 3.
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3 Proof of the Theorem

Let the coefficients ai, 0 ≤ i ≤ n be i.i.d exponential random variables with mean one. Their
joint density is given by

p(x0, x1, · · · , xn) = exp

(
−

n∑
j=0

xj

)
, x = (x0, · · · , xn) ∈ Rn+1

+ (3.9)

where R+ = {x ∈ R : x ≥ 0}. Based on the general formula given in the theorem of [Z04] in
section 2, we have by taking k = 0,

P(Nn = n) =
1

n!

∫
D

exp

(
−λ

n∑
j=0

σj

)
· |λ|n

∏
1≤j<k≤n

|xj − xk|dx1 · · · dxndλ (3.10)

where the integration domain

D = {(x1, · · · , xn, λ) ∈ Rn+1 : λσj ≥ 0, j = 0, 1, · · · , n}

and
σj = σj(x1, · · · , xn)

as given in (2.4). The first critical step is the fact that the exponent in the integrand can be
written in an alternative form:

n∑
j=0

σj =
n∏
j=1

(1 + xj). (3.11)

This alternative form, while not helpful for the Gaussian ensemble, suggested that the prob-
lem would be easier to analyze for the exponential ensemble.

The second step is the realization that the integration region D is the first quadrant Rn+1
+ .

Indeed, it is clear λ = λσ0 ≥ 0 and we only need to show

σj(x1, · · · , xn) ≥ 0 for j = 1, 2, · · · , n

if and only if
xj ≥ 0 for j = 1, 2, · · · , n.

This follows from the relation

n∏
k=1

(x+ xk) =
n∑
j=0

σjx
n−j > 0 for all x > 0.

In fact, if xk < 0 for some k, then there is a contradiction by taking x = −xk > 0.
Thus we can carry out the integration∫
R+

exp

(
−λ

n∏
j=1

(1 + xj)

)
· λndλ =

n∏
j=1

(1 + xj)
−n−1

∫ ∞
0

tne−tdt = n! ·
n∏
j=1

(1 + xj)
−n−1
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in (3.10) with respect to λ, and we obtain

P(Nn = n) =

∫
Rn
+

n∏
j=1

(1 + xj)
−n−1 ·

∏
1≤j<k≤n

|xj − xk|dx1 · · · dxn. (3.12)

Now using the transformation tj = (1 + xj)
−1, we have∏

1≤j<k≤n

|xj − xk| =
∏

1≤j<k≤n

|t−1j − t−1k |

=
∏

1≤j<k≤n

(tjtk)
−1 ·

∏
1≤j<k≤n

|tj − tk|

=
∏
j=1

t−n+1
j ·

∏
1≤j<k≤n

|tj − tk|,

dx1 · · · dxn =
n∏
j=1

(−t−2j ).

Thus we obtain

P(Nn = n) =

∫ 1

0

· · ·
∫ 1

0

∏
1≤j<k≤n

|tj − tk|dt1 · · · dtn (3.13)

which is a form of Selberg integral. Of course, we can also rewrite in terms of expectation
involving i.i.d uniform random variables Ui on the interval [0, 1],

P(Nn = n) = E
∏

1≤j<k≤n

|Uj − Uk|. (3.14)

The explicit evaluation, as a very special case of Selberg’s integral discussed in section 2
with α = β = 1 and γ = 1/2, is given by

P(Nn = n) =
n∏
j=1

Γ2((j + 1)/2) · Γ((j + 2)/2)

Γ((n+ j + 2)/2) · Γ(3/2)
(3.15)

where Γ(x) =
∫∞
0
tx−1e−xdx is the standard Gamma function.

Next we simplify the gamma functions in the exact expression above and separate out
even and odd terms, based on even or odd n, to cancel terms like Γ(1/2) =

√
π. To be more

precise, we start by writing the Gamma functions involved in terms of factorials, that is

Γ(j/2) =

{
(j/2)! if j is even,

(j−1)!
2j−1((j−1)/2)!Γ(1/2) if j is odd.

Thus we can rewrite (3.15) as

P(Nn = n) =
∏

2k−1≤n

Γ2(k) · Γ(k + 1/2)

Γ((n+ 2k + 1)/2) · Γ(1/2)
·
∏
2k≤n

Γ2(k + 1/2) · Γ(k + 1)

Γ((n+ 2k + 2)/2) · Γ(1/2)

=
∏

2k−1≤n

(k − 1)!(2k − 1)!

22k−2Γ((n+ 2k + 1)/2)
·
∏
2k≤n

((2k)!)2 · Γ(1/2)

24k−1k!Γ((n+ 2k + 2)/2)
.
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When n = 2m, we have

P(N2m = 2m) =
m∏
k=1

(k − 1)!(2k − 1)!

22k−2Γ((2m+ 2k + 1)/2)
·
m∏
k=1

((2k)!)2 · Γ(1/2)

24k−1k!Γ((2m+ 2k + 2)/2)

=
m∏
k=1

22m+2(k − 1)!(2k − 1)!(m+ k)!

(2m+ 2k)! · Γ(1/2)
·
m∏
k=1

((2k)!)2 · Γ(1/2)

24k−1k!(m+ k)!

=
1

(m!)2

m∏
k=1

((2k)!)3

(2m+ 2k)!
=

(
m∏
k=1

1

22

(
4k − 2

2k − 1

)(
4k

2k

))−1

=

(
2m∏
k=1

1

2

(
2k

k

))−1
=

(
2m−1∏
k=1

(
2k + 1

k

))−1
.

When n = 2m− 1, we have

P(N2m−1 = 2m− 1) =
m∏
k=1

(k − 1)!(2k − 1)!

22k−2Γ((2m+ 2k)/2)
·
m−1∏
k=1

((2k)!)2 · Γ(1/2)

24k−1k!Γ((2m+ 2k + 1)/2)

=
(m− 1)!

22m−2

m−1∏
k=1

(k − 1)!(2k − 1)!

22k−2(m+ k − 1)!)
·
m−1∏
k=1

((2k)!)2(m+ k)!

22k−1−2mk!(2m+ 2k)!

=
1

2m−1(m− 1)!

m−1∏
k=1

((2k)!)3

(2m− 1 + 2k)!
=

(
m−1∏
k=1

1

22

(
4k

2k

)(
4k + 2

2k + 1

))−1

=

(
2m−1∏
k=1

1

2

(
2k

k

))−1
=

(
2m−2∏
k=1

(
2k + 1

k

))−1
.

Combining the above formulas, we finish the explicit evaluation of the probability.
To find the large n asymptotic behavior of the probability, we use the well-known results

on factorial function Γ(n+ 1) = n! and super-factorial function

G(n+ 1) =
n−1∏
k=1

k!

and their extensions, the Gamma function Γ(z) and the Barnes G-function G(z). By using
Euler-MacLaurin Summation, it is classical fact that, as n→∞,

log Γ(n+ 1) = log n! = n log n− n+
1

2
log n+

log(2π)

2
+ o(1);

logG(n+ 1) =
n−1∑
k=1

log k! =
1

2
n2 log n− 3

4
n2 +

log(2π)

2
n− 1

12
log n+

1

12
− logA+ o(1).

where A is the Glaisher-Kinkelin constant. Observe also that

G(2n+ 1) =
2n−1∏
k=1

k! =

(
n−1∏
k=1

(2k)!

)
·

(
n−1∏
k=1

(2k + 1)!

)
=

(
n−1∏
k=1

(2k + 1)!

)2

·

(
n−1∏
k=1

(2k + 1)

)−1
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and

n−1∏
k=1

(2k + 1) =

(
n−1∏
k=1

(2k + 2)(2k + 1)

)
·

(
n−1∏
k=1

2(k + 1)

)−1
= (2n)! · (2n · n!)−1 .

Thus (
n−1∏
k=1

(2k + 1)!

)2

=
(2n− 1)!

2n−1(n− 1)!
G(2n+ 1).

Now we are ready to obtain asymptotically the probability of all real zeros. We have as
n→∞,

logP(Nn = n) = − log
n−1∏
k=1

(2k + 1)! + log
n−1∏
k=1

(k + 1)! + log
n−1∏
k=1

k!

= −1

2
log

(
(2n)!

2nn!
G(2n+ 1)

)
+ logG(n+ 2) + logG(n+ 1)

= −1

2
(log(2n)!− n log 2− log n!)− 1

2
G(2n+ 1) + logG(n+ 2) + logG(n+ 1)

= −1

2

(
n log n− (1− log 2)n+

log 2

2
+ o(1)

)
−1

2

(
2n2 log(2n)− 3n2 + n log(2π)− 1

12
log(2n) +

1

12
− logA+ o(1)

)
+

(
1

2
(n+ 1)2 log(n+ 1)− 3

4
(n+ 1)2 +

log(2π)

2
(n+ 1)− 1

12
log(n+ 1)

+
1

12
− logA+ o(1)

)
+

(
1

2
n2 log n− 3

4
n2 +

log(2π)

2
n− 1

12
log n+

1

12
− logA+ o(1)

)
= − log 2 · n2 +

1

2
n log n+

1

2
(log π − 1)n+

3

8
log n

+
1

24
(7 log 2 + 12 log π) +

3

2

(
1

12
− logA

)
+ o(1)

by using the approximation for log Γ(n+ 1) and logG(n+ 1).
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