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ON THE EXPECTED NUMBER OF ZEROS
OF A RANDOM HARMONIC POLYNOMIAL

WENBO V. LI AND ANG WEI

(Communicated by Michael T. Lacey)

Abstract. We study the distribution of complex zeros of Gaussian harmonic
polynomials with independent complex coefficients. The expected number
of zeros is evaluated by applying a formula of independent interest for the
expected absolute value of quadratic forms of Gaussian random variables.

1. Introduction

A harmonic polynomial is a complex-valued harmonic function in C (the complex
plane) of the form hn,m(z) := pn(z) + qm(z), where pn(z) and qm(z) are analytic
polynomials of degree n and m, respectively, with 0 ≤ m ≤ n. In 1992, T. Sheil-
Small conjectured that the sharp upper bound for the number of zeros of hn,m(z)
was n2. Wilmshurst proved this in [Wi98] by using Bézout’s theorem and also
demonstrated by examples that the bound is sharp for m = n and m = n − 1. In
addition, for m ≤ n−1, it was conjectured in [Wi98] that the the maximal number
of zeros should be m(m − 1) + 3n − 2. The case m = 1 was proved in Khavinson
and Swiatek [KS03] by using powerful techniques from complex dynamics. Other
related works can be found in [BHS95], [BL04], [Ge03] and [KN06]. Due to the
variability of the number of zeros for hn,m(z), unlike polynomials of fixed degree,
it is natural to ask for the expected number of zeros on C with random coefficients.

There is a long history of studying zeros of a random polynomial whose coeffi-
cients are independent, non-degenerate random variables; see [EK95] for a survey.
Exact formulae for the expected number of real zeros under independent identi-
cally distributed Gaussian coefficients are found for a random polynomial by Kac
[Kac43], and for a random trigonometric polynomial by Dunnage [D66]. Much
work was also done on complex roots over a fixed domain; see [SV95], [IZ97] and
[PV05]. For harmonic homogeneous polynomials of degree d in m + 1 variables,
that is, the sum of powers of all m + 1 variables in each term is always d and
the Laplacians of the polynomials are equal to zero, the expected number of roots
for a system of m such random harmonic homogeneous polynomial equations is
(d(d + m − 1)/m)m/2; see [EK95]. One may also consider systems of homogeneous
harmonic polynomials of different degrees, or one may consider underdetermined
systems, and obvious generalizations of the above result still hold; see Kostlan
[Ko02] for a detailed discussion.
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In this paper, we consider a challenging general case and find the expected num-
ber of zeros in an open domain T ⊂ C for a random harmonic polynomial

hn,m(z) =
n∑

j=0

ajz
j +

m∑
j=0

bjz
j

with 0 ≤ m ≤ n, where aj and bj are centered complex Gaussian random variables,

i.e. E aj = E bj = 0, with E ajak = δjk

(
n
j

)
and E bjbk = δjk

(
m
j

)
. Our argu-

ment also works for independent identically distributed standard complex or real
Gaussian variables. The use of the Gaussian distribution is mainly due to feasibility
of computation and provides a reasonable understanding of universality behavior
under other distributions. The main theorem of this paper is:

Theorem 1.1. The expected number of zeros of hn,m(z) = pn(z) + qm(z) on an
open domain T ⊂ C, denoted by E Nh(T ), is given by:

E Nh(T ) =
1
π

∫
T

1
|z|

r2
1 + r2

2 − 2r2
12

r2
3

√
(r1 + r2)2 − 4r2

12

dσ(z)(1.1)

where σ(·) denotes the Lebesgue measure on the complex plane and

r12 = mn|z|4(1 + |z|2)m+n−2 , r3 = (1 + |z|2)m + (1 + |z|2)n ,

r1 = r3(1 + |z|2)n−2
(
n2|z|4 + n|z|2

)
− n2|z|4(1 + |z|2)2n−2 ,

r2 = r3(1 + |z|2)m−2
(
m2|z|4 + m|z|2

)
− m2|z|4(1 + |z|2)2m−2 .

In particular, when m = n, the expected number of zeros over the entire C is

E Nh(C) =
πn2

4
√

n − 1
+

n

2
− n2

2
√

n − 1
arctan(

1√
n − 1

)

∼ π

4
n3/2 as n → ∞,

and when m = αn + o(n) with 0 ≤ α < 1, E Nh(C) ∼ n as n → ∞.

The argument principle immediately shows that a harmonic polynomial hn,m(z)
has at least n zeros. It is surprising to see that even when m is a fraction of n,
the expected number of zeros is still n asymptotically. On the other hand, when
m is n minus a constant, the expected number of zeros is of order n3/2. Note
that the finiteness of E Nh(C) shows that hn,m(z) has finite number of zeros with
probability one. We can also prove E Nh(C) < ∞ directly by applying Bézout’s
theorem, which implies that hn,m(z) = pn(z) + qm(z) has at most n2 zeros if
pn(z) and qm(z) are relatively prime; see [DHL96], [Wi98] and [S02]. Following a
standard argument similar to the proof of Lemma 5 in [CW03], one can show that
the probability P (∃ z0 ∈ C s.t. pn(z0) = qm(z0) = 0) is zero, which is equivalent to
saying that pn(z) and qm(z) are relatively prime polynomials almost surely.

Our approach follows the general framework used in [IZ97], but significantly
different arguments at the technical level are needed. To be more precise, it is
crucial for us to find an expectation of the form E |X2

1 − X2
2 + X2

3 − X2
4 | for joint

Gaussian vector (X1, X2, X3, X4). In all known early work on random functions,
one only needs to deal with E |X2

1 + X2
2 | = E X2

1 + E X2
2 . This is why we have a

very hard time finding the variance or higher moments of the number of zeros, since
we do not know how to evaluate expressions like E

∏d
j=1 |X2

1j − X2
2j + X2

3j − X2
4j |.
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Note that the difference of squares comes from the combined effect of variables z
and z.

Our method also works in principle for the rational harmonic function, and hence
provides a probabilistic interpretation of the Khavinson-Neumann theorem on the
gravitationally lensed images of a light source by n masses; see [KN06]. Technical
details will be given elsewhere.

The remaining sections are organized as follows: Section 2 deals with the evalu-
ation of the absolute value of a quadratic form of Gaussian random variables. Our
method is based on a representation of the absolute function. A useful corollary is
given; for related topics of independent interest, see details in [LW08].

The main part of section 3 is devoted to the detailed proof of Theorem 1.1, fol-
lowed by interesting asymptotic results. In the last section we discuss the alternative
setting of random harmonic polynomials with independent identically distributed
standard complex Gaussian coefficients. Finally, it must be mentioned that the
first author’s attention was drawn to the problem by an excellent lecture given by
D. Khavinson.

2. Preliminary results

We start with the Rice formula, which provides a representation for the expected
number of zeros of certain random fields; see [AW05] and [AW06] for details.

Lemma 2.1. Let f : U → Rd be a random field, with U an open subset of Rd.
Assume that

(1) f is Gaussian,
(2) almost surely the function t → h(t) is of class C1,
(3) for each t ∈ U , f(t) has a non-degenerate distribution (i.e. V ar (f(t)) 	 0),
(4) P {∃ t ∈ U s.t. f(t) = 0, det (f ′(t)) = 0} = 0.

Then, for every Borel set T contained in U , we have

E (Nf (T )) =
∫

T

E
(
| det (f ′(t)) |

∣∣f(t) = 0
)
p0 dt

where p0 is the probability density of f(t) at 0.

Note that function f in the above formula is defined on Rd. In our applica-
tion, we need to find all zeros (real and complex) of hn,m(z). They are real zeros
of 
hn,m(x + iy) = 0 and �hn,m(x + iy) = 0 for (x, y) ∈ R2, or equivalently,

hn,m(reiθ) = 0 and �hn,m(reiθ) = 0, for (r, θ) ∈ R+ × [0, 2π) ⊂ R2. It is easy
to check the conditions in Lemma 2.1. In particular, condition (4) follows from
Lemma 5 in [CW03] based on the smoothness of f .

Next we give a formula for the expectation of the absolute value of a quadratic
form 〈X, HX〉 of Gaussian random variables. The formula is of independent interest
and a special case is used in the proof of the main theorem.

Proposition 2.1. For a real centered Gaussian random vector X = (X1, X2, · · · ,
Xn) with covariance matrix R and any real symmetric matrix H = (hij)n×n,

E |〈X, HX〉| = E |
n∑

i,j=1

hijXiXj |

=
2
π

∫ ∞

0

1
t2

(
1 − det(I + 2itRH)1/2 + det(I − 2itRH)1/2

2 det(I + 4t2R2H2)1/2

)
dt
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where I is the n × n identity matrix and i =
√
−1.

Proof. We only need to consider a non-singular covariance matrix R, since for
singular R the result still holds by considering R∗ = R+ δI and using the standard
limiting argument of taking δ → 0.

We start with the representation

|x| =
2
π

∫ ∞

0

1 − cos(xt)
t2

dt =
2
π

∫ ∞

0

1 − E εe
iεxt

t2
dt

where P(ε = 1) = P(ε = −1) = 1/2. Then we can rewrite the expectation as

E |〈X, HX〉| =
2
π

∫ ∞

0

1
t2

(
1 − E εE Xeiεt〈X,HX〉

)
dt .

For a non-singular covariance matrix R, the density of X is

fX(x) = (2π)−n/2 (det R)−1/2 e−
1
2 〈x,R−1x〉.

Therefore we have

E Xeiεt〈X,HX〉 =
∫

Rn

(2π)−n/2(det R)−1/2e−
1
2 〈x,R−1x〉eiεt〈x,Hx〉dx

= (det R)−1/2

∫
Rn

(2π)−n/2e−
1
2 〈x,(R−1−2itεH)x〉dx

= (det R)−1/2
(
det(R−1 − 2itεH)

)−1/2

= (det(I − 2itεRH))−1/2
.

Note that

det(I − 2itεRH) · det(I + 2itεRH) = det(I + 4t2R2H2) �= 0,

and so det(I − 2itεRH) �= 0. Hence

E εE Xeiεt〈X,HX〉 =
1
2

1
det(I − 2itRH)1/2

+
1
2

1
det(I + 2itRH)1/2

=
det(I − 2itRH)1/2 + det(I + 2itRH)1/2

2 det(I + 4t2R2H2)1/2
,

which is real since det(I −2itRH)1/2 and det(I +2itRH)1/2 are conjugate to each
other. Thus we finish the proof. �

It is obvious that in the case where the matrix H = (hij)n×n is positive definite,
we have directly

E |〈X, HX〉| = E 〈X, HX〉 =
n∑

i,j=1

hij rij

where (rij)n×n = R is the covariance matrix of X.

Next we give an important corollary which will be used in the proof of Theo-
rem 1.1. Other interesting cases and applications can be found in [LW08].

Corollary 2.1. Let (X1, X2) be a centered Gaussian with E X2
1 = σ2

1, E X2
2 = σ2

2,
and E X1X2 = σ12. If (X3, X4) is an independent copy of (X1, X2), then

E |X2
1 − X2

2 + X2
3 − X2

4 | =
2σ4

1 + 2σ4
2 − 4σ2

12√
(σ2

1 + σ2
2)2 − 4σ2

12

.
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Proof. In this case, we have H = diag (1,−1, 1,−1) and

R =

⎛
⎜⎜⎝

σ2
1 σ12 0 0

σ12 σ2
2 0 0

0 0 σ2
1 σ12

0 0 σ12 σ2
2

⎞
⎟⎟⎠ .

Therefore

I + 2itRH =

⎛
⎜⎜⎝

1 + 2itσ2
1 −2itσ12 0 0

2itσ12 1 − 2itσ2
2 0 0

0 0 1 + 2itσ2
1 −2itσ12

0 0 2itσ12 1 − 2itσ2
2

⎞
⎟⎟⎠ .

Hence the determinant is given by

det(I + 2itRH) =
(
1 + 2(σ2

1 − σ2
2)it + (4σ2

1σ
2
2 − 4σ2

12)t
2
)2

.

Write p = 4σ2
1σ

2
2 − 4σ2

12 and q = σ2
1 −σ2

2 ; then Proposition 2.1 can be simplified:

E |X2
1 + X2

2 − X2
3 − X2

4 | =
2
π

∫ ∞

0

1
t2

(
1 − 1 + pt2

(1 + pt2)2 + 4q2t2

)
dt

=
2
π

∫ ∞

0

p(1 + pt2) + 4q2

(1 + pt2)2 + 4q2t2
dt

=
1
π

∫ ∞

0

p + 4q2 − 2ipqt

pt2 + 1 − 2iqt
+

p + 4q2 + 2ipqt

pt2 + 1 − 2iqt
dt

=
p + 2q2√

p + q2
=

2σ4
1 + 2σ4

2 − 4σ2
12√

(σ2
1 + σ2

2)2 − 4σ2
12

.

�

3. Proof of Theorem 1.1

In order to apply the representation of the number of zeros given in (2.1), we
need to separate the real and imaginary parts of hn,m(z). Namely, we write

hn,m(z) =
n∑

j=0

ajz
j +

m∑
j=0

bjz
j

=
n∑

j=0

(aj,1 + iaj,2)rj(cos jθ + i sin jθ) +
m∑

j=0

(bj,1 + ibj,2)rj(cos jθ − i sin jθ)

= Y1(r, θ) + iY2(r, θ)

where

Y1(r, θ) =
n∑

j=0

rj(aj,1 cos jθ − aj,2 sin jθ) +
m∑

j=0

rj(bj,1 cos jθ + bj,2 sin jθ) ,

Y2(r, θ) =
n∑

j=0

rj(aj,1 sin jθ + aj,2 cos jθ) +
m∑

j=0

rj(bj,2 cos jθ − bj,1 sin jθ) .
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Write Y (r, θ) = (Y1(r, θ), Y2(r, θ))T ; the Jacobian determinant in (2.1) of this vector
can be computed as

det∇Y (r, θ) =
∂Y1(r, θ)

∂r

∂Y2(r, θ)
∂θ

− ∂Y1(r, θ)
∂θ

∂Y2(r, θ)
∂r

=
1
r
{

⎛
⎝ n∑

j=1

jrj(aj,1 cos jθ − aj,2 sin jθ)

⎞
⎠

2

−

⎛
⎝ m∑

j=1

jrj(bj,1 cos jθ + bj,2 sin jθ)

⎞
⎠

2

+

⎛
⎝ n∑

j=1

jrj(aj,1 sin jθ + aj,2 cos jθ)

⎞
⎠

2

−

⎛
⎝ n∑

j=1

jrj(bj,2 cos jθ − bj,1 sin jθ)

⎞
⎠

2

} .

To reduce the number of parameters, we change the expression back to a function
of z. We cannot do this at the beginning because the representation of the number
of zeros can only be applied to real functions. Note that 
zj = rj cos j θ and
�zj = rj sin j θ, so we have

det∇Y (r, θ) =
1
|z|

(
u2

1 − u2
2 + v2

1 − v2
2

)

where

u1 = 

n∑

j=1

jzjaj , v1 = �
n∑

j=1

jzjaj ,

u2 = 

m∑

j=1

jzjaj , v2 = �
m∑

j=1

jzjaj .(3.1)

To simplify notation, we also define

u3 = 
 (pn(z) + qm(z)) , v3 = � (pn(z) + qm(z)) .(3.2)

Then according to (2.1), we need to find the conditional expectation

E

(
|u2

1 − u2
2 + v2

1 − v2
2 |

∣∣∣ u3 = 0, v3 = 0
)

= E |U2
1 − U2

2 + V 2
1 − V 2

2 |(3.3)

where (U1, U2, V1, V2) is the Gaussian random vector with the same distribution as
(u1, u2, v1, v2) under the condition u3 = 0, v3 = 0. According to [T90, page 34] the
covariance matrix of (U1, U2, V1, V2) is given by

Rc = C − BA−1BT(3.4)

where A2×2 = cov(u3, v3), B4×2 = cov ((u1, u2, v1, v2), (u3, v3)) and C4×4 = cov(u1,
u2, v1, v2). From (3.1) and (3.2), we have

E u2
3 = E v2

3 =
1
2

n∑
j=0

(
n

j

)
|z|2j +

1
2

m∑
j=0

(
m

j

)
|z|2j =

1
2
(1 + |z|2)n +

1
2
(1 + |z|2)m ,

E u1u3 = E v1v3 =
1
2

n∑
j=1

(
n

j

)
j|z|2j =

1
2
n|z|2(1 + |z|2)n−1 ,

E u2
1 = E v2

1 =
1
2

n∑
j=1

(
n

j

)
j2|z|2j =

1
2
(n2|z|4 + n|z|2)(1 + |z|2)n−2 .
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Similarly we also have

E u2u3 = E v2v3 =
1
2
m|z|2(1 + |z|2)m−1 ,

E u2
2 = E v2

2 =
1
2
(m2|z|4 + m|z|2)(1 + |z|2)m−2 .

Thus the covariance matrices are

A2×2 =
1
2

diag
(
(1 + |z|2)n + (1 + |z|2)m, (1 + |z|2)n + (1 + |z|2)m

)
,

B4×2 =
1
2

⎛
⎜⎜⎝

n|z|2(1 + |z|2)n−1 0
m|z|2(1 + |z|2)m−1 0

0 n|z|2(1 + |z|2)n−1

0 m|z|2(1 + |z|2)m−1

⎞
⎟⎟⎠ ,

C4×4 =
1
2

diag
(
(n2|z|4 + n|z|2)(1 + |z|2)n−2, (m2|z|4 + m|z|2)(1 + |z|2)m−2,

(n2|z|4 + n|z|2)(1 + |z|2)n−2, (m2|z|4 + m|z|2)(1 + |z|2)m−2
)
.

Therefore following (3.4) we obtain the covariance matrix of (U1, U2, V1, V2),

Rc =
1

2r3

⎛
⎜⎜⎝

r1 −r12 0 0
−r12 r2 0 0

0 0 r1 −r12

0 0 −r12 r2

⎞
⎟⎟⎠

where r1, r2, r12 and r3 are given in Theorem 1.1.

By applying Corollary 2.1, we obtain the expectation of the absolute value in
(3.3):

E |U2
1 − U2

2 + V 2
1 − V 2

2 | =
1
r3

r2
1 + r2

2 − 2r2
12√

(r1 + r2)2 − 4r2
12

.

Note that p0 is the probability density of h(z) at 0, which means

p0 = (2π)−1
(
det(E Y (r, θ)Y (r, θ)T )

)−1/2
= (πr3)−1

where Y (r, θ) = (Y1(r, θ), Y2(r, θ))T as defined at the beginning of this section.
Combining these, we have

E (Nh(T )) =
∫

T

1
|z| E |U2

1 − U2
2 + V 2

1 − V 2
2 | p0 dσ(z)

=
1
π

∫
T

r2
1 + r2

2 − 2r2
12

|z| r2
3

√
(r1 + r2)2 − 4r2

12

dσ(z) .(3.5)

In the case that m = n, we have r1 = r2, and part of the integrand in (3.5) can
be simplified:

r2
1 + r2

2 − 2r2
12

r2
3

√
(r1 + r2)2 − 4r2

12

=

√
r2
1 − r2

12

r2
3

=

√
n2|z|4 + n3|z|6
2(1 + |z|2)2 .
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Therefore the expected number of zeros in C is

E Nh(C) = π−1

∫ 2π

0

∫ ∞

0

nr
√

1 + nr2

2(1 + r2)2
dr dθ

= n2

∫ ∞

1

(
1

s2 + n − 1
− n − 1

(s2 + n − 1)2

)
ds

=
πn2

4
√

n − 1
+

n

2
− n2

2
√

n − 1
arctan(

1√
n − 1

)

∼ π

4
n3/2

by using the substitution s =
√

1 + nr2.
In the case that m = αn+o(n) with 0 ≤ α < 1, clearly r2 and r12 are dominated

by r1; therefore we have

lim
n→∞

1
n

r2
1 + r2

2 − 2r2
12

r2
3

√
(r1 + r2)2 − 4r2

12

= lim
n→∞

1
n

r1

r2
3

=
|z|2

(1 + |z|2)2 .

So the asymptotic result for E Nh(C) is

lim
n→∞

1
n

E Nh(C) =
1
π

∫
C

|z|2
|z|(1 + |z|2)2 dσ(z) = 1 .

Thus we finish the proof. �

For the remaining part of this section, we briefly examine the asymptotic results
for m close to n. In the case that m = n− k for a fixed positive integer k, we have

r2
1 + r2

2 − 2r2
12

r2
3

√
(r1 + r2)2 − 4r2

12

∼ n3/2r3(1 + r2)k/2−2

1 + (1 + r2)k
as n → ∞.

Thus limn→∞ E Nh(C)/n3/2 = ck, where

ck =
∫ ∞

0

2r2(1 + r2)k/2−2

1 + (1 + r2)k
dr .

When k = 0, the case degenerates into m = n with c0 = π/4. For k ≥ 1, c1 =
0.49 · · · , c2 = 0.31 · · · , and ck decreases to zero as k → ∞. In fact, as k → ∞,
ck ∼

√
2πk−3/2.

4. Independent identically distributed setting

Next we consider another general case,

h̃n,m(z) =
n∑

j=0

ãjz
j +

m∑
j=0

b̃jz
j ,

with 0 ≤ m ≤ n, where ãj and b̃j are independent identically distributed complex
Gaussian random variables with E ãj = E b̃j = 0 and E ãj ãk = δjk. In this case, the
differences when compared with the setting in the previous section are the values
of r1, r2, r12 and r3. So we omit the details and only state the result.
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Theorem 4.1. The expected number of zeros of h̃n,m(z) = p̃n(z) + q̃m(z) on T ,
denoted by E Nh̃(T ), is given by

E Nh̃(T ) =
1
π

∫
T

1
|z|

r̃2
1 + r̃2

2 − 2r̃2
12

r̃2
3

√
(r̃1 + r̃2)2 − 4r̃2

12

dσ(z)(4.1)

where σ(·) denotes the Lebesgue measure on the complex plane and

r̃12 = (
n∑

j=1

j|z|2j)(
m∑

j=1

j|z|2j) , r̃3 =
n∑

j=0

|z|2j +
m∑

j=0

|z|2j ,

r̃1 = r̃3

n∑
j=1

j2|z|2j − (
n∑

j=1

j|z|2j)2 , r̃2 = r̃3

m∑
j=1

j2|z|2j − (
m∑

j=1

j|z|2j)2 .

Numerical analysis suggests that the asymptotic of above expectation for T = C

is limn→∞ E Nh(C)/n = 1 for fixed m, but a rigorous analytic asymptotic hasn’t
been found.
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