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1. Introduction

Bounds on multivariate Gaussian probability over a suitable region arise naturally in many areas of probability and
statistics. There is also a long history of studying them in various settings, in particular the case of multivariate Mills’ ratio
given in (3.1). Two well-known approaches are employed in the literature, see for example Hashorva and Hüsler [3]. One
is translating multivariate Mills’ ratio into a product of univariate Mills’ ratios and then using corresponding lower and
upper bounds of univariate Mills’ ratio to estimate each term. The key point of this approach is based on the maximal and
minimal eigenvalues of the covariance matrix which are hard to find. The second approach is using Jensen’s inequality to
find a lower bound. The basic idea is separating out diagonal terms in the Gaussian density and then using the fact that
remaining density term is a convex function.

In this note, we provide a new upper bound approach for general convex domain based on a geometric observation
associate with a dominating point under the given Gaussian density. Our bound is sharper than known ones on multivariate
Mills’ ratio in many case. In order to do the comparison, we also present some useful facts on univariate Mills’ ratio.

The rest of this paper is arranged as follows. In Section 2, we write out explicit coefficients of the polynomial in the
numerator of the nth approximation of Mills’ ratio. Two related functions and their limits are also given. In Section 3, we
briefly review known approaches of multivariate Mills’ ratio and give our main result of this paper. An example in Hashorva
and Hüsler [3] is analyzed and show that for certain regions of parameters, our upper bound is better than those listed in
their paper.

2. Univariate Mills’ ratio

Mills’ ratio is defined as

R(x) = ex2/2

∞∫
x

e−t2/2 dt
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which can be approximated by

R(x) = 1/x − 1/x3 + 1 · 3/x5 − · · · =
∞∑

n=0

(−1)n (2n)!
2nn! x−2n−1.

The well-known bounds, which can be checked by differentiation, are

x/
(
x2 + 1

)
� R(x) � 1/x, x > 0. (2.1)

In fact, it is easy to see from Shenton [8]

x

x2 + 1
= R2(x) � R4(x) � · · · � R(x) � · · · � R3(x) � R1(x) = 1

x
, x > 0, (2.2)

where Rn(x) is the nth approximation of the continued fraction

R(x) = 1

x+
1

x+
2

x+
3

x+ · · · .

It is also known that

Rn(x) = pn(x)/qn(x),

where

qn(x) =
∑

0�2m�n

(2m)!
2mm!

(
n

2m

)
xn−2m

is the Hermite polynomial of degree n with leading coefficient 1, and

pn(x) =
∑

0�i�n−1

q(i)
n−1−i(x) (2.3)

is a polynomial of degree n − 1 with leading coefficient 1. Here q(k)
n (x) is the kth derivative with respect to x. The mono-

tonicity of error of the approximation is discussed in Dudley [2].
Here, we provide a concise expression for pn(x) which is useful in Section 3.

Proposition 2.1. We can write

pn(x) =
∑

0�2m�n−1

(
(n − 1 − m)!

2m(n − 1 − 2m)!
∑

0�i�m

(
n

i

))
xn−1−2m.

Proof. The aim is to rewrite (2.3) into a polynomial in x with explicit coefficients. Note that qn(x) = E(x + ξ)n , where ξ is a
standard normal random variable. From (2.3) we have

pn(x) =
∑

0�i�n−1

(
E(x + ξ)n−1−i)(i) =

∑
0�2i�n−1

(n − 1 − i)!
(n − 1 − 2i)! E(x + ξ)n−1−2i .

Using the fact Eξ2k = (2k)!/2kk! and Eξ2k+1 = 0,

E(x + ξ)n−1−2i =
∑

0�2k�n−1−2i

(
n − 1 − 2i

2k

)
(2k)!
2kk! xn−1−2i−2k.

Combining them together, and replacing i + k by m,

pn(x) =
∑

0�2i�n−1

∑
2i�2m�n−1

(n − 1 − i)!
(n − 1 − 2m)!

1

2m−i(m − i)! xn−1−2m.

Exchanging the summations and replacing m − i by j, we have

pn(x) =
∑

0�2m�n−1

∑
0� j�m

(n − 1 − m + j)!
(n − 1 − 2m)!

1

2 j j! xn−1−2m.

The crucial observation is the identity
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∑
0� j�m

1

2 j

(
n − 1 − m + j

n − 1 − m

)
= 1

2m

∑
0�i�m

(
n

i

)
,

which can be checked by induction on m. It can also be proved directly by a technique detailed in Li [5]. Thus a simple
substitution finishes the proof. �

Next we discuss some better bounds of R(x) than those in (2.1). It was given in Birnbaum [1] and Sampford [6], that

2/
(√

x2 + 4 + x
)
< R(x) < 4/

(√
x2 + 8 + 3x

)
, x > 0.

Thus one can consider a function θ(x) such that

R(x) = 4/
(√

x2 + θ(x) + 3x
)
, x > 0. (2.4)

Here are some basic properties of θ(x).

Proposition 2.2. The function θ(x) is well-defined on (0,∞), and

θ1(x) � θ3(x) � · · · � θ(x) � · · · � θ4(x) � θ2(x), lim
x→∞ θ(x) = 8, (2.5)

where θn(x) = 8(1/Rn(x) − x)(2/Rn(x) − x).

Proof. From (2.4), we can rewrite θ(x) = 8(1/R(x) − x)(2/R(x) − x). For x > 0 fixed and 0 < y < 4/3x, it is easy to see that
f (y) = 8(1/y − x)(2/y − x) is decreasing. Hence the bounds in (2.5) follow from (2.2). Furthermore, θ2(x) = 8(x2 + 2)/x2

and θ3(x) = 8(x4 + 4x2)/(x4 + 4x2 + 4), and the common limit is 8, which implies limx→∞ θ(x) = 8. We finish the whole
proof. �

We can also consider a function β(x) such that R(x) = 2/(x + √
x2 + β(x)), and βn(x) = 4(1/Rn(x) − x)/Rn(x). Then β(x)

is well-defined on (0,∞), and

β1(x) � β3(x) � · · · � β(x) � · · · � β4(x) � β2(x), lim
x→∞β(x) = 4.

The proof is similar and we omit the details.

3. Results on general convex domain

We first briefly review some known results and methods used in particular for the convex domain D = {X � a}, where
X = (X1, . . . , Xn)T and a = (a1, . . . ,an)T , {X � a} = ⋂n

i=1{Xi � ai}. Let X be a multivariate normal random vector with
positive definite covariance matrix Σ and M = Σ−1. The multivariate Mills’ ratio R(a, M) is defined by

R(a, M) = (2π)n/2|Σ |1/2 exp
(
aT Ma/2

) · P (X � a). (3.1)

Note that R(a, M) is the multivariate normal probability beyond a certain point divided by the multivariate normal density
at that point. It is easy to obtain by shift substitution

R(a, M) =
∫

u�0

exp
(−aT Mu − uT Mu/2

)
du,

where u = (u1, . . . , un)T .
In Savage [7], a pair of upper and lower bounds for R(a, M) was given by using 1 − x � e−x � 1 on exp(−uT Mu/2). In

Steck [9], two lower bounds were given by Jensen’s inequality as outline in the introduction. In Hashorva and Hüsler [3],
a pair of upper and lower bounds for multivariate Gaussian tails probability was given by the minimal and maximal
eigenvalues after a shift substitution. They also obtained another lower bound by Jensen’s inequality again after a shift
substitution.

Below is an upper bound of multivariate Gaussian probability for a general convex domain based on a geometric idea
used in Kuelbs, Li and Linde [4] in a special setting. The shift substitution using the dominating point plays a crucial role.

Theorem 3.1. Let X be a centered multivariate normal random vector with positive definite covariance matrix Σ , and M = Σ−1 . Let
D be a closed convex domain which does not contain the origin, and x∗ be the unique closest point in D to the origin under Hilbert
norm 〈x, Mx〉1/2 . Then

P (X ∈ D) � exp
(−〈x∗, Mx∗〉/2

) · P (X ∈ D − x∗). (3.2)

In particular, P (X ∈ D) � (1/2) · exp(−〈x∗, Mx∗〉/2).
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Proof. First note that 〈x, M y〉 is an inner product on Rn . Indeed, the associated Hilbert space is the reproducing kernel
Hilbert space generated by the Gaussian measure μ(A) = P (X ∈ A). Thus x∗ ∈ D is uniquely defined, see [4].

By the convexity of D and definition of x∗ , for arbitrary x ∈ D and 0 � λ � 1, λx∗ + (1 − λ)x ∈ D and
〈
λx∗ + (1 − λ)x, M

(
λx∗ + (1 − λ)x

)〉
� 〈x∗, Mx∗〉. (3.3)

Simplify (3.3) and cancel the factor (1 − λ), we obtain

2λ〈x, Mx∗〉 + (1 − λ)〈x, Mx〉 � (1 + λ)〈x∗, Mx∗〉.
Taking λ → 1, we have for all x ∈ D ,

〈x, Mx∗〉 � 〈x∗, Mx∗〉. (3.4)

Next, by shift substitution y = x − x∗ , and using (3.4),

P (X ∈ D) = |M|1/2

(2π)n/2

∫
y∈D−x∗

exp
(−(〈y, M y〉 + 2〈y, Mx∗〉 + 〈x∗, Mx∗〉)/2

)
dy

� |M|1/2

(2π)n/2

∫
y∈D−x∗

exp
(−(〈y, M y〉 + 〈x∗, Mx∗〉)/2

)
dy

= exp
(−〈x∗, Mx∗〉/2

) · P (X ∈ D − x∗).
Finally note that D − x∗ ⊂ {x: 〈x, Mx∗〉 � 0} which is a half-space with Gaussian measure 1/2. We finish the whole

proof. �
Next, we consider a simple example which was examined in detail in [3]. We show that the upper bound in (3.2) is

better than those listed in [3] for certain range of parameters. Let ξ,η be two Gaussian random variables with mean zero
and the covariance matrix Σ = ( 1 ρ

ρ 1

)
,−1 < ρ < 1, and M = Σ−1. Fix D = {x1 � b1, x2 � b2} with constants b1 > b2 > 0. In

the case 0 < ρ < b2/b1, the upper bound given in [3] is equivalent to

P (ξ � b1, η � b2) � exp
(−〈x∗, Mx∗〉/2

) · 1 + ρ

2π(1 − ρ2)1/2
R(z1)R(z2), (3.5)

where z1 = (b1 − ρb2)(1 + ρ)1/2/(1 − ρ2), z2 = (b2 − ρb1)(1 + ρ)1/2/(1 − ρ2). For the bound from Theorem 3.1, we have

P (ξ � b1, η � b2) � exp
(−〈x∗, Mx∗〉/2

) · P (ξ � 0, η � 0)

= exp
(−〈x∗, Mx∗〉/2

) · π/2 + arcsin(ρ)

2π
. (3.6)

Note that for 0 < ρ < b2/b1, we have

(1 − ρ)(b1 + b2) > b1 − ρb2 > b1(1 − ρ) > b2(1 − ρ) > b2 − ρb1 > 0.

Since R(x) is decreasing on (0,∞), we see that

R(z1)R(z2) > R
(
(b1 + b2)/(1 + ρ)1/2) · R

(
b2/(1 + ρ)1/2) > R(2b1)R(b1). (3.7)

Using (2.2), (3.7) and the fact arcsin(ρ) � ρπ/2 on [0,1], a sufficient condition of the upper bound in (3.6) is less than the
one in (3.5) is

b2/b1 > ρ >
(
1 − 4R2

2n(2b1) · R2
2n(b1)/π

2)1/2
, for any n � 1.

The range for ρ above is non-empty. In fact for n = 1, one can take 1 > b2/b1 >
√

1 − 4/25π2 and 1 > b1 > (5π/2)1/2 ×
(1 − b2

2/b2
1)

1/4.
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