World Scientific

www.worldscientific.com

COSMOS, Vol. 1, No. 1 (2005) 95-106
© World Scientific Publishing Company “

RECENT DEVELOPMENTS ON LOWER TAIL PROBABILITIES
FOR GAUSSIAN PROCESSES

WENBO V. LI

Department of Mathemalical Sciences, Unwersity of Delaware
Newark, DE 19716
wli@math. udel.edu

QI-MAN SHAO
Department of Mathematics, University of Oregon

Eugene, OR 97403
shao@math.uoregon.edu

Received 30 November 2001

This paper surveys briefly some recent developments on lower tail probabilities for real
valued Gaussian processes. Connections and applications to various problems are dis-
cussed. A new and simplified argument is given and it is of independent interest.
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1. Introduction

Let X = (Xi)ies be a real valued Gaussian process indexed by S, that is, each
finite linear combination ZiaiX i, ti € S, is a real valued Gaussian (normally
distributed) random variable. Assume that it is separable and has mean zero. The
distribution of the Gaussian process X is therefore completely determined by its
covariance function E (X, X;), s,t € S. The lower tail probability for the Gaussian
process studies the behaviour of

IE”(Sup(XL—XL“)gw) as ¢ — 0 (1.1)
tes

with tg € S fixed, while the small ball probability (or small deviation) and the large
deviation for the Gaussian process study the behaviour of

P (sup | Xy — Xy | < .’L‘) asx — 0
tesS
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and

P (sup(XL - X)) = )\) as A — oo
tesS

respectively. It is well known that large deviation results play a fundamental role in
studying the upper limits of Gaussian processes, such as the Strassen type of law
of the iterated logarithm. The theory of large deviation has been well developed,
see, for example, Leadbetter, Lindgren and Rootzen (1983), Ledoux and Talagrand
(1991), Ledouux (1996) and Bogachev (1998) for Gaussian processes, Varadhan
(1984) and Dembo and Zeitouni (1998) for the general theory of large deviations.
The small ball probability is a key step in studying the lower limits of the Gaussian
processes. It has been found that the small ball estimate has close connections with
various approximation quantities of compact sets and operators. We refer to the
survey of Li and Shao (2001a) for recent developments and various applications in
this direction.

There are various motivations for the study of lower tail probability other
than its own importance. The study is related to the following different prob-
lems among many others: (i) the most visited sites of symmetric stable processes
(Bass, Eisenbaum and Shi, 2000); (i) Brownian pursuit problem (Bramson and
Griffeath, 1991; Kesten, 1992); (iii) random polynomials (Dembo, Poonen, Shao
and Zeitouni, 2001); (iv) the first passage time for the Slepian process (Slepian,
1961; Shepp, 1971); (v) the first exit time of integrated Brownian motion (McKean,
1963; Groeneboom, Jongbloed and Wellner, 1999); and (vi) the zero-crossings of
Gaussian noise (Wong, 1966; 1970).

The main aim of this paper is to review recent results on the lower tail prob-
abilities for Gaussian processes. Connections and applications to various problems
are also discussed. A new and simplified argument is given in Theorem 3.1 and it
is of independent interest. It should be emphasized that the lower tail probability
in (1.1) is closely related to the one-sided (fixed) level crossing probability

P(sup(XL—Xm) ga) as A — oo (1.2)
tEAS

which can sometimes be viewed as the upper tail behavior
P(r>A) as A — o0 (1.3)

for the first hitting/passage/exit/coupling time 7 determined by S. In fact, under
appropriate scaling condition on X; and S, (1.1) and (1.2) are equivalent (see Secs. 3
and 4 for examples). This is why useful techniques for (1.1) also work well for (1.2)
and vice versa. When X; is a Markov process, there are systemetic studies for
(1.3) and many analytic tools are available. When X, is Gaussian, there are very
few general methods. Slepian’s lemma (inequality) is one of the most powerful tools
and several other methods are developed very recently in Li and Shao (2001b,c) (see
Secs. 2 and 3 for details). We hope that readers can use recent results summarized
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here in their own works and contribute to this exciting area of research. There is
also a need for a systematic study of various techniques and applications which are
spread over different areas.

Finally, we mention that there are only a handful of different Gaussian processes
for which the precise distribution of the supremum over finite intervals is known.
In all these ten or fewer cases, the derivation of the distribution of the supremum
is based mot on general Gaussian techniques but either on the simplistic nature of
the process or on Markov methods when it is also a Markov process. On the other
hand, these cases can be used to obtain bounds for related processes via Slepian’s
lemma and/or the comparison inequality at the end of Sec. 3.

Throughont this paper, log(z) = In(max(z, e)) for # € R! and In is the natural
logarithm.

2. Lower Tail Probabilities for General Gaussian Processes

Let X = (X{)ies be a real valued Gaussian random process indexed by S with
mean zero. Define an L?-metric induced by the process X as

d(s,t) = (B|X, — X,)Y2, stes.

For every £ > 0 and a subset A of S, let N(A,¢) denote the minimal number of
open balls of radius ¢ for the metric d that are necessary to cover A. For t € § and
h >0, let B(t,h) ={s € S: d(t,s) <h}, and define a locally and uniformly Dudley
type entropy (LUDE) integral

oo
@ = supsup / (log N(B(t,h),eh))*? de.
h>0teS Jo

Assume @ < oo and let D = sup, ,.gd(t,s) be the diameter of the set S. For
6 = 1000(1+ Q). define

Ay = {t € 8: d(t,tg) < 0712},
_Aki{tESZ 0k713?<d(t,t0)£6k.$}3 k:(]a]-a?:"'aL:

where L = 1+[logy(D/x)]. Let Ni(x) := N(Ax, 0*~22) denote the minimal number
of open balls of radius #*~2z for the metric d that are necessary to cover Ay,
k=0,1,...,L, and let

N(zr)=1+ Z Ni(z).

0<k< L

The results in this section are attributed to Li and Shao (2001b). We have the
following general lower bound.

Theorem 2.1. Assume that Q) < oo and

E((Xe—X4,)( Xy — X)) 20 for s,teS (2.1)
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Then we have

P (Sup(Xt = Xl()) S I') > e_N(J:)- (22)
tes

The upper bound can be obtained under a different set of conditions.

Theorem 2.2. For x > 0, let s; € S, i = 1,...,M be a sequence such that for
every &

i |Corr(Xs, — X1, Xs, — Xe,)| < 5/4 (2.3)
i=1
and
d(si, t0) = (B|X,, — X [7)'/2 > /2. (2.4)
Then
P (ng(xt — Xg) € .q;) L g MAR, (2.5

To match the lower bound given in Theorem 2.1, one can select the sequence
{si} in Theorem 2.2 as follows. Let ¢ > 1. For k =1,2,...,L — 1, choose sy j,j =
1...., M such that

(1/2)g"z < d(sk4,t0) < ¢"x.

Hopefully, when q is large, {sp;,1 < j < M, 1 <Fk < L} satisfies (2.3).
The bounds provided by Theorems 2.1 and 2.2 are sharp under certain regular
conditions.

Theorem 2.3. Let { X (t),t € [0,1]%} be a centered Gaussian process with X (0) =0
and stationary increments, that is

Vt,s €[0,1]¢, o*(t—s|) =E(X: — X,)?

where |-| is the Buclidean norm on RY. If there are 0 < a < 3 < 1 such that o(h)/h
is non-decreasing and o(h)/h® non-increasing. Then there exist 0 < ¢1 < ¢a < o0
depending only on «, § and d such that for 0 <z < 1/2

exp(—calog(l/x)) < IE”( sup X(t) < cr(:c))
te0,1]2
< exp(—cy log(1/z)). (2.6)

Theorem 2.4. Let {X(¢),t € [0,1]%} be a centered Gaussian process with
X(0) =0 and

E(XX) = [] 5(020) + (s - (1t — si) (27)

for t = (t1,...,ta) and s = (s1,...,54). If there are 0 < a < [ < 1 such
that a(h)/h® is non-decreasing and o(h)/h® non-increasing. Then there exists

d

—



Recent Developments on Lower Tail Probabilities for Gaussian Processes 99
0 < c3 < ey < 00 depending only on «, 3 and d such that for 0 < x < 1/2
exp(—eqlog?(1/z)) < P( sup X(t) < ad(m))
te[n,1]4
< exp(—eslogh(1/x)). (2.8)

In particular, for the fractional Levy Brownian motion and the fraction Brownian
sheet, one has the following

o Let {L,(t), t € [0,1]?} be the fractional Levy’s Brownian motion of order a,
0 < o< 2, ie Ly(0) = 0, EL,(t) = 0 and E(La(t) — La(s))? = |t — s|%,
0<a<?,

exp(—eg log(l/x)) < P( sup L(t) < :r)
te[0,1]4

< exp(—ci log(1/z)).

o Let {B.(t), t € [0,1]?} be the fractional Brownian sheet of order a, 0 < a < 2,
ie. B,(0) =0, EB,(t) =0 and

(t? + 3? = Ef:‘_ = S:‘_ln)

b |

d
E (Ba(t)Ba(s)) = [ [
=1

for t = (¢1,...,t4) and 5 = (s1,...,54). Then there exists 0 < ¢3 < ¢y < 00
depending only on « and d such that for 0 < x < 1/2

exp(—eqlogd(1/x)) < P( sup B,(t) < r)
tef0,1)4

< exp(—e3log?(1/2)).

For the lower tial probability for the two-dimensional Brownian sheet {W (t),t €
[0,1]?} or By above, Csaki, Khoshnevvisan and Shi (2000) proved that

exp(—es log?(1/z)) < IE”( sup W(t) < ,c)
10,12
2 i
< e (B 10E21/2)
loglog(1/x)
For the one-dimensional fractional Brownian motion of order o, 0 < o < 2,
Molchan (1999) obtained an exact rate of the lower tail probability

P( sup B,(t) < ;r;) = gl#-a)fatoll) (2.9)

0<t<1
as & — 0.
It should be pointed out that the lower probability is very different from the
small ball probability under the sup-norm, which considers the absolute value of
the supremum of a Gaussian process. In particular, the small ball problem for
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Brownian sheet W (t) on R under the sup-norm is still open for d > 3. The best
known results are

lnlED( sup |W(t)] < .’E) ~ —z2log®(1/x)
te[0.1]?

and

—coz 2 log? 1 (1/z) < lan( sup |W(t)] < r)
te(o,1)
< —erx? logzd_z(l/:r).
for d > 3, as & — 0. We refer to a recent survey paper of Li and Shao (2001a) for
more information on the small ball probability and its applications.

3. Lower Tail Probabilities for Stationary Gaussian Processes

Let {W(t),t > 0} be the Brownian motion and {U(¢),t > 0} be the Ornstein—
Uhlenbeck process. It is known that {U(t),t > 0} and {W(e)/e!/2,t > 0} have the
same distribution. Moreover

P( sup Wi(t) < :r) =P(|W(Q)| <x) ~ (2/71')1/21'

0<t<1

as ¢ — 0 and

P ( sup Ult) < U) =exp(—T/2+ o(T))

0<t<T

as T'— oo. It would be interesting to find the connection between these two types
of lower tail probabilities. To this end, we first prove a general result for stationary
Gaussian processes.

Theorem 3.1. Let {Y;,t > 0} be an almost surely continuous stationary Gaussian
process with EY; = 0 and EY? = 1 for t > 0. Put p(t) = EYY;. Assume that
p(t) = 0. We have

(1) The limit

1
p(x) ;== lim Tln]?( sup Y < T) (3.1)

T—oc 0<t<T

exists and

plx) =sup T~ lInP ( sup Y; < .’L’)
T>0 0<i<T

for every x € RL.
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(it) If p(t) is decreasing and

2 . e PO —pt) ;
Gho =l "1 on (3:2)
then
—y+z((l+a2 )2 -1
IP’( sup YLSI-&-y)S(I"H( & (« o) ) IFD( sup Y; <.’E)
0<t<nh Gh.0 0<t<Onh
(3.3)

forx e RY, y>0,0< 8 <1 and n > 1, where ® is the standard normal
distribution function.

(iii) If p(t) is decreasing and ane > 0 for every 0 < h < oo and 0 < 6 < 1, then
p(z) is continuous.

Proof. The existence of the limit p(x) is ensured by sub-additivity as proven in
Li and Shao (2001b). Parts (ii) and (iil) are new. We only need to prove (ii) since
(iii) is a direct consequence of (ii). To prove (ii), let Z1, Za,. .., Z, be independent
standard normal random variables independent of {¥;,t > 0} and write a = ay ¢.
Observe that

Y, Z;
P( max sup e ey < x)

I<ign (j_1)p<i<ih V1+a? —

>P( max sup Vi <x+y, max aZ; < —y+x(l —|—a2)1/2—r)
1<isn j_Dh<i<ih 1<iz=n

_P( max sup i<z -i—y)P( max aZ; < —y+ x(1 +a2)1/2 —:c)

1<i<n (i—1)h<t<ih 1<i<n

—y +2(1 +a?)1/2 — ;r;)
- .

—IFD( max sup Yt<:n+y)<1)”(

1=iSn (1) h<t<ih

Also note that for (i — 1)h < s, < ih

N { (4 lz+)(Y +aZ;) } — E Y Yoy
p(|t — s) + a?

= (a1 = (Bt — 5I)) — (81t — sI) — p(Jt — 1))

1+ a2
oz (@ = p(lt = s]) = (p(01t = 51) = p(lt = s1))

ey (FXI U By
1+ a? 1—p(t—s|)

<0
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by the definition of . Similarly, for (i — 1)h < s <ih, (j—1)h <t < jh andi#j

(Y, +aZ)(Yi +aZ) | _ pllt — s)
E = < p(0t — s|) = E Yy, Y.
{ 1+ a? 1+ a2 = plolt— =) Ba-be

Therefore, by the Slepian lemma

max sup s
1<i<n i nyp<t<in V1 + a2

IA

P( max sup Yor < :r)
1=iZn (j_1)h<t<ih

= IP’( sup Y; < .’E).
0<t<0nh

This proves (3.3) by the above inequalities. O
Remark 3.1. It is easy to see that condition (3.2) is satisfied if

pt) =1—ct™ +o(")
as t — 0 for some ¢ > 0 and a > (.

To state the connection between lower tail probabilities of a non-stationary
Gaussian process and its dual stationary Gaussian process, let {X;,t > 0} be a
Gaussian process with Xy = 0, E X; = 0. Assume that:

(A1) EX,X; > 0and EX2 =1t* for a > 0;
A2) {Y; = X(e")/e®/?,t > 0} is a stationary Gaussian process;
b P
(A3) {X4,0<t <1} and {of’/QX,g,, 0 <t < 1} have the same distribution for each
fixed a > 0.
(Ad) p(t) :==EY;Y} is decreasing and condition (3.2) holds.

By Theorem 3.1

1
Co i = — lim TlnP( sup Y; < 0)

T—oo 0<i<T
1
=—sup=InP| sup ¥; <0
7501 0<t<T
exists. The next result shows that the constant ¢, is closely related to the rate of

the lower tail probability P (511p05£51 X; < r)

Theorem 3.2. Under conditions (A1)—(A4), we have

P( sup X; < l) — p2a/ato(l)
0<t<1

as x — 0.

The above result was proved in Li and Shao (2001b) when X is the fractional
Brownian motion of order « by using the Slepian lemma, the scaling property of X,
and the continuity of p(z) proved in Theorem 3.1. And the proof is quite complicated
when 0 < a < 1.
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It is easy to see that conditions (A1)—(A4) are satisfied for the fractional Brow-
nian motion B,, of order o. Therefore, by (2.9)

IP( sup Ba(el)/et*/? < 0) =exp(—T(1 —a/2) 4+ 0(T))
0<t<T
as T — oc.

Another class of Gaussian processes satistying (Al)-(A4) are {X,(t),t > 0}
with the covariance function

9 (ot (14a)/2
E Xo(s)Xa(t) = ((G)H)

K

where o > (). This family of Gaussian processes seems new and has Brownian like
properties

(1) EX2(0) =+
(2) {Xalat),t = 0} and {/aXs(t),t > 0} have the same distribution for fixed
a > (.

Their detailed properties are studied in Li and shao (2001e).

When « = 1, the process is also related to the probability that a random poly-
nomial has no real zero. To be more precise, let {Z;, i > 0} be independent standard
normal random variables. In their study on the probability that the random poly-
nomial Zf’:o Z;z* does not have real root in R, Dembo, Poonen, Shao and Zeitouni
(2001) obtain

n
P(ZZ@.&:‘{ <0, Vxe Rl) = p %ol

i=0

as n — oo through even integers, where

1
b= —4 lim TIHP( sup Yi(t) < 0)

T—oo 0<t<T
and Y; () = Xy (e')/e'/? is a centered stationary Gaussian process with
Fe1t—el/2

EXEiW =T

for 5,t > 0.
It is proved in Li and Shao (2001c,e) that 0.5 < b < 1, but the exact value of b is
still unknown. A different limiting representation for the decay exponent b is given
in Li and Shao (2001e).

At the end of this section, it is worthy to mention a new Gaussian comparison
inequality proven in Li and Shao (2001c¢).

Let {&.1 < i< n} and {n;,1 < i < n} be two normal random vectors with
mean zero and variance one. Assume that

E&& > Emny >0
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for 1 <4,7 <n. Then for x > 0

T — 2 arcsin(En;n;)
. . ), e ax m; <@
P(mese) <2(mmnss) T (FSanie

1<i<j<n

e~ EE E5)

4. An Application to the Capture Time of the Fractional
Brownian Motion Pursuit

Let {Bia(t); t = 0}(k =0,1,2,...,n) be independent fractional Brownian motions
of order o € (0, 2) and set
T = inf{t > 0: max By ,(t) = Bya(t) + 1}.
1<k<n

The stopping time 7, o can be viewed as the capture time in the random pursuit
problem for the fractional Brownian particles; see Bramson and Griffeath (1991),
Kesten (1992) and Li and Shao (2001d) for more details. A natural question is: when
is IE (7p,q) finite? The question is the same as estimating the lower tail probability
of maxy<p<pnsUPgey<y (Bra(t) — Boa(t)). In fact, for any s > 0, by the fractional
Brownian Scaling,_ -

Plrya >s) =P ( max sup (Bra(t) — Boa(t)) < 1)

1<k<n p<i<s
=P max sup (Bra(t) — Boa(t)) < s *?).
(lglkgn 0321( kal(t) — Boal(t)) <s

Li and Shao (2001b) show that

P ( max sup (Bk;,a(t) — Bpa (t)) < r) — p2rn.a/ato(l)
1<k<n 0<t<1

as x — 0, where

. 1
Voo = — TIE%G = hlp(n;l.zlg]“ llgllﬁgn(nﬂ ) —You() < (]) (4.4)
and Yy o (t) = e /2By, o (e!), k = 0,1,...,n, are the fractional Ornstein Uhlenbeck
process of order a. In other words,

P(T‘n.a > t) — ¢~ Yn.ato(l)

as t — oo for fixed n.

In the Brownian motion case, o = 1, with 7, = 7.1, E75 < oc and E713 = o0
are proved in Li and Shao (2001d) by using some distribution identities and the
Faber Krahn isoperimetric inequality. It is still a conjecture due to Bramson and
Griffeath (1991) that E7; < oo. Their simulation suggested that 4 ~ 1.032. Also
for the Brownian motion case, Kesten (1992) proved that -, = 7,1 is of order Inn
when n is large. More precisely, Kesten showed that

0< hﬂgét Yo/ Inn < limsup~,/Inn < 1/4

n—oo
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and conjectured the existence of limy, o ¥,/ Inn. Li and Shao (2001c) give an

affirmative answer to Kesten’s conjecture and obtain

1 v aon Ve ; Tn.a
— < liminf —= < limsup —— < o0
5 n—oo Inn P

where d, = QIODO(em + e "% — (% — e F)*) dx. Furthermore, for v, = vn.1, we
proved that

i P T
n—oo Inn 4’

We also conjecture that indeed

Ve 1

n—oo Inn de’
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