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Let X=(X(t))t ¥ T be a symmetric a-stable, 0 < a < 2, process with paths in the
dual Eg of a certain Banach space E. Then there exists a (bounded, linear)
operator u from E into some La(S, s) generating X in a canonical way. The aim
of this paper is to compare the degree of compactness of u with the small devia-
tion (ball) behavior of f(e)=−log P(||X||E* < e) as e Q 0. In particular, we
prove that a lower bound for the metric entropy of u implies a lower bound for
f(e) under an additional assumption on E. As applications we obtain upper
small deviation estimates for weighted a-stable Levy motions, linear fractional
a-stable motions and d-dimensional a-stable sheets. Our results rest upon an
integral representation of La-valued operators as well as on small deviation
results for Gaussian processes due to Kuelbs and Li and to the authors.
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1. INTRODUCTION

Let T ]” be an index set and let E be a Banach space of functions
over T. Assume that for some separable Hilbert space with orthogonal
normal base (ONB) (fk)k \ 1 and a given operator v from H into E the sum
;.

k=1 tkv(fk) exists a.s. in E. Here and later on we always denote (tk)k \ 1
as an i.i.d. sequence of standard normal distributed random variables, i.e.,
tk ’N(0, 1). Then

X(t) :=C
.

k=1
tk(vfk)(t), t ¥ T, (1.1)



defines a centered Gaussian process X over T possessing a.s. paths in E. As
discovered in Kuelbs and Li (5) and completed in Li and Linde, (6) the degree
of compactness of v is tightly related to the behavior of the so-called small
deviation (or small ball) function

f(e)=−log P(||X||E < e) as e Q 0. (1.2)

One very useful way to measure the degree of compactness of an
operator is the behavior of its entropy numbers. They are defined as
follows: Let v map a Banach space E into another Banach space F, then

en(v) :=inf 3e > 0 : v(BE) ı 0
2n−1

j=1
{v(xj)+eBF}, xj ¥ BE 4 (1.3)

where BE and BF are the (closed) unit balls in E or F, respectively.
The precise relation between the sequence (en(v))n \ 1 and the behavior

of (1.2) asserts the following.

Proposition 1.1. Let X and v be in relation (1.1) and let h ¥ (0, 2) be
given. Defining l > 0 by 1/l=1/h−1/2, the following are equivalent:

(1) en(v) % n−1/h as nQ.

(2) − log P(||X||E < e) % e−l as e Q 0.

Here and throughout the paper, f(x) % g(x) as xQ a means c [
f(x)/g(x) [ C for x near to a and with some absolute constants 0 < c [
C <..
A natural question is whether or not there are stochastic processes

other than Gaussian that allow an entropy description of their small
deviation behavior similar to ones in Proposition 1.1. Natural candidates
are symmetric a-stable processes with 0 < a < 2. This seems very likely
based on our investigation in this paper, yet several difficult problems
appear even in the basic formulation. For example, in contrast to the
Gaussian case, not every a-stable process allows a representation (1.1) with
standard a-stable r.v.’s instead of the tk’s. Consequently, at the beginning it
is not clear at all for which operator the degree of compactness should be
investigated. Another important difference is that almost all stable proces-
ses of interest have noncontinuous paths. Thus the Banach space C(T) of
continuous functions over T is not suitable in this case. More suitable
Banach spaces such as, e.g., B(T), the space of bounded functions over T,
are non-separable, hence measurability problems arise.
One possible way to overcome all these difficulties is to regard a stable

process X as random variable with values in a dual Banach space Eg

262 Li and Linde



endowed with the weak-f-topology. This is the setup we use and under
some natural assumptions on X there exists an operator u: EQ La satis-
fying

Ee iOx, XP=e−||u(x)||
a
a, x ¥ E. (1.4)

The main result of this paper (Theorem 4.5 later) asserts in particular the
following one-sided extension of Proposition 1.1 to the a-stable case, a < 2.
Namely, if X and u are related via (1.4), then under an additional assump-
tion on Eg, en(u) \ c · n−1/h for some h > 0 with 1/h > [1−1/a]+ implies

− log P(||X||E* < e) \ cŒ · e−l (1.5)

where 1/l=1/h+1/a−1. It is very likely this is true without any addi-
tional assumption about Eg or E, respectively. The question remains open
because it is closely related to the famous duality problem for entropy
numbers, cf. Bourgain et al. (2) and Milman and Szarek. (13) As applications
of (1.5) we obtain lower estimates for the small deviation function of
weighted a-stable Levy motions, linear fractional a-stable motions and
d-dimensional a-stable sheets. For a comprehensive survey of various small
deviation results for stable processes, see Li and Linde. (7)

The organization of the paper is as follows. Section 2 contains a
representation theorem, see (2.2), for operators u. This is more or less a
different way to state a well-known and very useful representation theorem
for stable processes as mixture of Gaussian ones. In Section 3 we compare
the entropy numbers of an operator u represented via (2.2) with those of
the vd’s appearing there. Here we follow the ideas developed in Marcus
and Pisier (12) with refinements. Our key results are contained in Section 4.
Especially, Lemma 4.2 turns out to be crucial for our later investigations.
The idea is to precise an important lemma of Kuelbs and Li (5) since the
original one is not sufficient for our purposes. This allows us to prove
Theorem 4.5 which contains the above mentioned relation between entropy
and small deviations for stable processes. Of course, Theorem 4.5 is con-
siderably weaker than Proposition 1.1, but to our knowledge it is the first
general small deviation result for non-Gaussian processes. Finally, Section 5
is devoted to the problem of representing stable processes by suitable
operators. As a consequence we get some applications of Theorem 4.5 for
special stable processes.

2. INTEGRAL REPRESENTATION OF La -VALUED OPERATORS

Let E be a Banach space with topological dual Eg and let (S, s) be
a finite measure space. A linear and continuous operator u from E into
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La(S, s) for some a > 0 is order bounded if if there is a function f ¥

La(S, s) such that for any x ¥ E with ||x|| [ 1, |u(x)(s)| [ f(s), s-a.e.
(cf. Bourbaki, (1) Vakhania et al., (23) and Linde (11)). There is a useful equiva-
lent characterization. Let Bs(Eg) be the s-algebra on Eg generated by the
weak-f-open subsets of Eg. Then u is order bounded operator iff there is a
function j: SQ Eg, measurable with respect to Bs(Eg), such that

F
S
||j(s)||aE* ds(s) <. and u(x)=Ox, jP, x ¥ E. (2.1)

We shall say that the Eg-valued function j decomposes u weakly.
Now we state an abstract version of the representation theorem for

stable processes as mixtures of Gaussian ones.

Proposition 2.1. For 0 < a < 2 let u be an order bounded operator
from E into La(S, s). Then there are probability space (D, Q) as well as
(bounded) operators vd, d ¥ D, from a separable Hilbert space H into Eg

such that

exp(−||u(x)||aa)=F
D

exp(− 12 ||v
g
d (x)||

2
H) dQ(d) (2.2)

for all x ¥ E.

Remark. Here and in the sequel we always regard the dual vg of an
operator v from H into Eg as a mapping from E into H, i.e., we restrict vg

to E ı Egg.

Proof. Let j be the Bs(Eg)-measurable function satisfying (2.1) for
u: EQ La(S, s). Without loss of generality we can assume u: EQ La(S, s)
to be weakly decomposed by a function j: SQ Eg satisfying ||j(s)||=1
s-a.s. and, moreover, s(S)=1. To construct (D, Q) and operators vd,
d ¥ D, we choose an i.i.d. sequence (Vj)j \ 1 of S-valued random variables
possessing law s and an i.i.d. sequence (gj)j \ 1 of standard exponentially
distributed random variables, independent of the Vj’s. With these gj’s we
construct dependent Gamma random variables Cj :=g1+·· ·+gj, j \ 1.
Let us also define the constant

ca :=1F
.

0
x−a sin x dx2

1/a

· (E |t|a)−1/a

for t ’N(0, 1). Suppose that the Vj’s and gj’s are defined on the same
probability space (D, Q). If H is a separable Hilbert space we choose some
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fixed ONB (fj)j \ 1 in H and define for each d ¥ D the element vd(fj) ¥ Eg

by

vd(fj) :=ca ·Cj(d)−1/a ·j(Vj(d)), j=1, 2,... .

Note that the strong law of large numbers implies lim jQ. Cj/j=1 a.s.
Hence, using the fact that ||j(Vj(d))||=1 a.s., we see

C
.

j=1
||vd(fj)||2 [ c

2
a · C

.

j=1
Cj(d)−2/a <. a.s.,

i.e., the vd’s can be extended for almost all d ¥ D to bounded operators from
H into Eg. Let (tj)j \ 1 be an i.i.d. sequence ofN(0, 1)-distributed random
variables, defined on (W, P) and independent of all other sequences. For
x ¥ E fixed we set

k(w, d) :=ca C
.

j=1
tj(w) Cj(d)−1/a Ox, j(Vj(d))P.

This sum is known, cf. Samorodnitsky and Taqqu, (18) to exist for almost all
pairs of (w, d) and, moreover,

EdEw exp(i k(w, d))=exp(−Ed |Ox, j(V1(d))P|a)=exp(−||u(x)||
a
a). (2.3)

On the other hand,

Ew exp(ik(w, d))=exp 1− 12 c2a C
.

j=1
C(d)−2/a |Ox, j(Vj(d))P|22

=exp(− 12 ||v
g
dx||

2
H),

which by (2.3) implies

exp(−||u(x)||aa)=Ed exp(−
1
2 ||v

g
dx||

2
H)

for all x ¥ E. This completes the proof.

Remark. By the construction of the operators vd the following is
valid: Suppose that the decomposing function j of u takes its values in
a (closed) subspace F ı Eg. Then there are operators vd from H into F
satisfying (2.2). A consequence of this observation is the following
formulation.
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Corollary 2.2. Suppose that u maps from the dual space Eg into
La(S, s), 0 < a < 2, and that u is decomposed by a function j: SQ E with
sQ Oj(s), xgP measurable for each xg ¥ Eg and satisfying >S ||j(s)||aE ds(s)
<.. Then there are operators vd: HQ E such that

exp(−||u(xg)||aa)=F
D

exp(− 12 ||v
g
dx

g||2H) dQ(d)

for all xg ¥ Eg.

3. ENTROPY ESTIMATES FOR La-VALUED OPERATORS

Suppose an operator u from E into some La admits representation
(2.2) for suitable operators vd: HQ Eg, d ¥ D. Then this implies, cf. Marcus
and Pisier, (12) that for each x ¥ E the random variable d Q 2−1 ||vgdx||

2
H/

||u(x)||2a is a/2-stable and nonnegative. In particular, for any e > 0 we have

Q 1d ¥ D :
||vgdx||

2
H

||u(x)||2a
[ e2 [ exp(−A· e−a/(2−a)) (3.1)

for some constant A > 0 depending only on a.
The next proposition is a slightly improved version of a result in

Marcus and Pisier. (12)

Proposition 3.1. Suppose that u: EQ La and vd: HQ Eg, d ¥ D, are
given in the representation (2.2). With A > 0 from (3.1), set

r0 :=2−1 · (A/3)1/a−1/2 (3.2)

and for m ¥N define Dm ı D by

Dm :=3d ¥ D : en(v
g
d ) \ r0

en(u)
n1/a−1/2

, n \ m4. (3.3)

Then there is a universal constant o > 0 such that Q(Dm) \ 1−o · e−m for all
m ¥N.

Proof. Given x, y ¥ E with ||x|| [ 1, ||y|| [ 1, and e > 0 we define

De(x, y) :=3d ¥ D :
||vgd (x−y)||H
||u(x−y)||a

[ e4 ,
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and obtain by (3.1) the estimate

Q(De(x, y)) [ exp(−A· e−2a/(2−a)). (3.4)

Fix n ¥N for now and set g :=en(u). Then there are 2n−1 elements
x1,..., x2n−1 in the unit ball of E for which

||u(xi)−u(xj)||a \ g/2, i ] j.

Consequently, if

De(n) := 0
2n−1

i, j=1
De(xi, xj),

then from (3.4) we obtain

Q(De(n)) [ 22n−2 · e−A· e
−2a/(2−a)

. (3.5)

For d ¨ De(n) it follows that

||vgd (xi)−v
g
d (xj)||H \ eg/2, i ] j,

and hence

en(v
g
d ) \ eg/2=2−1e · en(u) (3.6)

for those d’s. Next we apply this construction to each n ¥N with e=en
depending on n as follows:

en :=(3n/A)1/2−1/a (3.7)

where A > 0 is as in (3.1) or (3.5). Plugging these en’s into (3.5) leads to

Q(Den (n)) [ 2
2n · e−3n [ e−n (3.8)

and, furthermore, if d ¨ Den (n), then by (3.6), (3.7), and (3.2) we obtain

en(v
g
d ) \ r0 ·

en(u)
n1/a−1/2

.

In other words, for Dm defined in (3.3) we have 4 n \ m Den (n)
c ı Dm, which

by (3.8) implies

Q(Dm) \ 1− C
.

n=m
e−n=1−

e
e−1

· e−m

as asserted.
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The preceding proposition tells us that certain lower estimates of en(u)
lead for almost all d’s to lower estimates of en(v

g
d ). However this is not

sufficient for our purposes because we have to know lower estimates for
en(vd), not for en(v

g
d ). To overcome this difficulty, we have to use the

strongest known form of duality results. To be more precise, let F be a
Banach space. We shall say that it possesses property D if there are con-
stants a, b > 0 such that for all compact operators v from a Hilbert space H
into F the estimate

e[a · n](vg) [ b · en(v) (3.9)

is valid. It is an long standing open problemwhether or not every Banach space
F possesses property D. As shown in Pajor and Tomczak-Jaegermann,(15)

Theorem 3.3, spaces of so-called weak cotype 2 have this property, in par-
ticular, all Lp-spaces with 1 [ p [ 2.

Corollary 3.2. Let u: EQ La and vd, d ¥ D be given in (2.2) and
suppose that almost all vd’s, map H into a subspace F ı Eg, possessing
property D. If

en(u) \ c1 · n−1/c(log n)b (3.10)

for certain c > 0 and b ¥ R, then there are constants r, o, a > 0 such that
for all m ¥N

Q(d ¥ D : en(vd) \ r · n−1/c−1/a+1/2(log n)b, n \ m) \ 1−oe−am. (3.11)

Proof. From Proposition 3.1 and (3.10) we derive

Q(d ¥ D : en(v
g
d ) \ r0 · c1 · n−1/c−1/a+1/2(log n)b, n \ m) \ 1−oe−m,

and by (3.9) this implies

Q 1d ¥ D : en(vd) \ r · n−1/c−1/a+1/2(log n)b, n \
m−1
a
2 \ 1−oe−m (3.12)

where a > 0 is as in (3.10) and r > 0 depends on c1, c, b and a, b from (3.9).
Changing o in (3.12) suitably, (3.11) follows by direct calculations.

4. SMALL BALL ESTIMATES OF STABLE MEASURES

Let (K, d) be a precompact metric space and denote by en(K)=
en(K, d) the dyadic entropy numbers of K, i.e., en(K) is the minimal e > 0
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for which there exists an e-covering of K with at most 2n−1 elements in K.
In certain situations it is easier to work with the metric entropy H(e, K)=
logN(e, K) of K, where

N(e, K) :=inf{n ¥N : ,e-covering of cardinality less than n of K}.

The metric entropy function H(e, K) may be regarded as a inverse to that
of entropy numbers. To be more precise and make it applicable to random
setting, we need the following lemma with relevant constants expressed
explicitly.

Lemma 4.1. Let (K, d) be a metric space such that for certain c > 0
and b ¥ R

en(K) \ c1 · n−1/c(log n)b (4.1)

holds whenever n \ m for some integer m \ m0 ¥N, where m0 is a fixed
constant such that x−1/c(log x)b is decreading for all x \ m0. Then (4.1)
yields

H(e, K) \ c2 · e−c log(1/e)bc (4.2)

provided that e < e0=e0(m) [ e0(m0) with

e0 :=c1 ·m−1/c(log m)b. (4.3)

The constant c2 > 0 in (4.2) depends only on c1 > 0 of (4.1) and on c

and b.

Proof. Note that nQ n−1/c(log n)b is decreasing for n \ m \ m0.
Consequently, for e0 defined by (4.3) and e < e0 we find a unique n \ m
such that with c1 > 0 as in (4.1)

c1 · (n+1)−1/c (log(n+1))b [ e < c1 · n−1/c(log n)b. (4.4)

Thus by (4.1) we obtain en(K) > e, i.e., it holds N(e, K) \ 2n−1 and using
(4.4) this leads to

H(e, K) \ (n−1) log 2 \
log 2
2
· cc1 · e

−c(log(n+1))bc. (4.5)

Our lemma then follows by using (4.4) and some simple calculation.
Before proceeding further let us recall some basic facts about centered

Gaussian measures and the operators generating them. If n is a probability
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measure on the weak-f-Borel sets Bs(Eg) of Eg, then its characteristic
function n̂ is a mapping from E into the complex numbers defined by

n̂(x) :=F
E*
exp(iOx, xgP) dn(xg), x ¥ E. (4.6)

The measure n is said to be centered Gaussian if there are a separable
Hilbert space H and an operator v mapping H into Eg such that

n̂(x)=exp(− 12 ||v
g(x)||2) (4.7)

for all x ¥ E. Denote by Kn ı Eg the unit ball of the reproducing kernel
Hilbert space of n, which coincides with {v(h): h ¥H, ||h|| [ 1} in our situa-
tion, i.e., for n generated by v via (4.7). The set Kn is known to be precom-
pact with respect to the norm topology on Eg. For a probability measure n

on Bs(Eg) we define its small ball function fn at the log-level by

fn(e) :=− log n{xg ¥ Eg : ||xg|| [ e}. (4.8)

As discovered in Kuelbs and Li (5) for Gaussian n the function fn is tightly
related with the degree of compactness of Kn. One of the basic estimates in
the paper asserts

H 1 e
l
, Kn 2 [

l2

2
+fn(e) (4.9)

for all e, l > 0. Note that we investigate measures n on Bs(Eg) here and
it may happen, even in the Gaussian case, that fn(e)=. for all e < e0.
In order to be applicable to the random setting, the following lemma is
needed. It is based on (4.9) and expresses relevant constants explicitly.

Lemma 4.2. Let n on Bs(Eg) be generated by v via (4.7) and suppose
that for some c ¥ (0, 2) and b ¥ R we have

H(e, Kn) \ c2 · e−c log(1/e)bc (4.10)

provided that e < e0 for a certain e0 > 0. Then this implies

fn(e) \ c3 · e−2c/(2− c) log(1/e)2bc/(2− c) (4.11)

for all e < e1 where

e1=c4 · e
1− c/2
0 log(1/e0)bc/2. (4.12)
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Here the constants c3, c4 > 0 in (4.11) and (4.12) depend only on c2, c,
and b.

Proof. In view of (4.10), the basic estimate (4.9) leads to

c2 ·1
e

l
2−c · log 1l

e
2bc [ l2

2
+fn(e) (4.13)

provided that e/l < e0. We define now a constant a ¥ (0, 1] as follows: If
b > 0, let a=1, while for b < 0 we choose a > 0 small so that

ac ·1 3
2− c
2bc−a

2

2
:=aŒ > 0. (4.14)

Recall that we have 0 < c < 2. With this number a and with c2 > 0 in (4.10)
we apply (4.13) for

l :=a· c1/(2− c)2 · e−c/(2− c) · log(1/e)bc/(2− c). (4.15)

The remaining step is to treat the log-term appearing on the left hand
side of (4.13) with l given in (4.15). First note that it suffices to prove
the lemma for e0 sufficiently small. Hence, if b > 0 we have by using
2/(2− c) > 1

log(l/e) \ log(1/e) (4.16)

for e < e0. If b < 0, the constant a is less than 1, and hence

log(l/e) [
2
2− c

log(1/e)+
log c2
2− c

[
3
2− c

log(1/e) (4.17)

again for e0 sufficiently small. Consequently, (4.16) and (4.17) lead to

log(l/e)bc \ log(1/e)bc, b > 0, and

log(l/e)bc \ 1 3
2− c
2bc · log(1/e)bc, b < 0.

Combining this with (4.13) and (4.14) yields, in dependence of b < 0 or
b > 0, respectively, that

fn(e) \ 5ac 1
3
2− c
2bc−a

2

2
6 · c2/(2− c)2 · e−2c/(2− c) · log(1/e)2bc/(2− c), (4.18)

fn(e) \
1
2
· c2/(2− c)2 · e−2c/(2− c) · log(1/e)2bc/(2− c). (4.19)
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This proves (4.11) with c3=aŒ · c
2/(2− c)
2 for b < 0 and with c3=c

2/(2− c)
2 /2 if

b > 0.
Finally observe that (4.18) or (4.19) only hold under the assumption

e/l < e0 with l=l(e) defined in (4.15). It is easy to see that e/l admits
two-sided estimates with multiples of e2/(2− c) · log(1/e)−bc/(2− c) where the
appearing constants only depend on c2, b, and c. Consequently, there
is some c4 > 0 depending only on these numbers such that with e1 :=
c4 · e

(2− c)/2
0 · log(1/e0)bc/2 the estimate e < e1 always yields e/l < e0. This

completes the proof.
Combining Lemma 4.1 with Lemma 4.2 leads to the following.

Proposition 4.3. Let n and Kn be as before and suppose that for all
n \ m we have

en(Kn) \ c1 · n−1/c(log n)b (4.20)

for some c1 > 0, some c ¥ (0, 2) and b ¥ R. Then

fn(e) \ c3 · e−2c/(2− c) · log(1/e)2bc/(2− c)

for all e < e1=e1(m) where

e1 :=c4 ·m−1/c+1/2 · (log m)b (4.21)

and c3, c4 > 0 depend only on c1, c, and b.

Before stating and proving the main result of this paper let us recall
some facts about symmetric a-stable (SaS) measures. A probability
measure m on Bs(Eg) is said to be SaS, 0 < a [ 2, if there is an operator
u: EQ La(S, s) for some finite measure space (S, s) such that the charac-
teristic function m̂ of m can be written as

m̂(x)=exp(−||u(x)||aa), x ¥ E. (4.22)

We are mainly interested in the non-Gaussian case, i.e., we suppose
0 < a < 2. By Tortrat’s theorem, (22) we can always assume u to be weakly
decomposed by an a-integrable Eg-valued function. Consequently, accord-
ing to Proposition 2.1 there exist a probability space (D, Q) and operators
vd: HQ Eg, d ¥ D, such that

m̂(x)=exp(−||u(x)||aa)=F
D

e−
1
2 ||v*dx||

2
H dQ(d) (4.23)

for x ¥ E.
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The next result asserts that for Q-almost all d ¥ D the function xQ
exp(−||vgdx||

2
H/2) appearing at the right hand side of (4.23) is characteristic

function of a s(Eg, E)-Radon (Gaussian) measure on Eg. For a proof we
refer to Sztencel. (19)

Proposition 4.4. If m and the vd’s satisfy (4.23), then for almost all
d ¥ D there exist centered Gaussian measures nd on Bs(Eg) satisfying

n̂d(x)=exp(−
1
2 ||v

g
dx||

2
H), x ¥ E.

Moreover, for any B ¥Bs(Eg)

m(B)=F
D

nd(B) dQ(d). (4.24)

Our next objective is to prove the main result of the present paper. It
relates the behavior of the small ball function fm for an SaS measure m on
Eg with the degree of compactness of u: EQ La. Here m and u are related
via (4.22). Let us also mention that we necessarily have en(u1)=en(u2) for
two operators u1, u2 both related to m by (4.22).

Theorem 4.5. Let E be a Banach space for which Eg possesses prop-
erty D and let m be an SaS measure on Bs(Eg) with characteristic function
represented by an operator u: EQ La. If u satisfies

lim inf
nQ.

n1/h · (log n)−b · en(u) \ C > 0 (4.25)

for some h > 0 with 1/h > [1−1/a]+ and some b ¥ R, then

lim inf
eQ 0

el · log(1/e)−bl ·fm(e) \ c0 ·Cl > 0 (4.26)

with 1/l=1/h+1/a−1 and some universal c0 > 0 depending only on
a, h, b and the constants a, b > 0 appearing in (3.9).

Proof. We first suppose

en(u) \ n−1/h(log n)b (4.27)

whenever n \ n0 for a certain n0 ¥N. Let nd, d ¥ D, be centered Gaussian
measures on Bs(Eg) related to m as in (4.24) and possessing characteristic
functions

n̂d(x)=exp(−
1
2 ||v

g
dx||

2
H), x ¥ E,
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for some operators vd: HQ Eg. An application of Corollary 3.2 leads in
view of (4.27) to the following: There exist constants r, o, a > 0 such that
for all m \ m0

Q(d ¥ D : en(vd) \ r · n−1/l−1/2 · (log n)b, n \ m) \ 1−o · e−am (4.28)

holds. Next we apply Proposition 4.3 with c1=r from (4.28) and with
c ¥ (0, 2) defined by 1/c :=1/l+1/2. Then for e > 0 small there are
integers me ¥N satisfying

e % m−1/le · (log me)b (4.29)

such that, if

en(Kn) \ r · n−1/l−1/2 · (log n)b

for all n \ me, then

fn(e) \ c3 · e−l · log(1/e)bl. (4.30)

Now we apply this for n=nd with d’s satisfying the condition in (4.28).
Observe that en(Knd )=en(vd). Thus, if we define for c3 > 0 given in (4.30)
the set

D(e) :={d ¥ D : fnd (e) \ c3 · e
−l · log(1/e)bl}, (4.31)

then we get

Q(D(e)) \ 1−o · e−ame (4.32)

for every small e > 0. Since (4.29) is equivalent to me % e−l · log(1/e)bl we
finally obtain for a certain c̃ > 0,

Q(D(e)) \ 1−o · e−c̃e
−l log(1/e)bl. (4.33)

With this preparation we are now in position to prove (4.26) under the
special assumption (4.27). From (4.33) and (4.31) we derive

m(||xg|| < e)=F
D

nd(||xg|| < e) dQ(d)

[ F
D(e)
exp(−fnd (e)) dQ(d)+Q(D(e)c)

[ exp(−c3 · e−l · log(1/e)bl)+o · exp(− c̃ · e−l · log(1/e)bl).
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Consequently, there is some constant c0 > 0 such that (4.27) implies

fm(e) \ c0 · e−l · log(1/e)bl (4.34)

for small e > 0. In particular, it follows that

lim inf
eQ 0

el · log(1/e)−bl ·fm(e) \ c0. (4.35)

Here the constant c0 > 0 in (4.34) or (4.35), is, of course, independent of the
operator u (or, equivalently, of the corresponding measure m).
As the final step, we remove the condition (4.27). Assume (4.25) and

let m0 be defined by

m10(x) :=exp(−||u(x)/C||
a
a), x ¥ E.

Then condition (4.27) is satisfied and hence

lim inf
eQ 0

el · log(1/e)−bl ·fm0 (e) \ c0. (4.36)

By noticing fm0 (e)=−log m(||xg|| < e C)=fm(e C), we complete the proof.
There are several remarks to Theorem 4.5. First, suppose that almost

all measures nd are concentrated on a subspace F ı Eg (or, equivalently,
almost all operators vd map into F). Then for the validity of Theorem 4.5 it
suffices that F possesses property D. Second, the restriction 1/h > 1−1/a

for 1 < a < 2 is natural due to a lower entropy estimate for bounded
SaS-processes, see, Marcus and Pisier (12) or Samorodnitsky and Taqqu, (18)

Theorem 12.3.1. Finally, as shown in Ryznar, (16) for 0 < a < 1 and all
SaS-measures m,

fm(e) [ c · e−a/(1−a), 0 < e < 1.

This explains why the l appearing in (4.26) always satisfy l < a/(1−a).

5. EXAMPLES AND APPLICATIONS

A stochastic process X=(X(t))t ¥ T over an index set T ]” is said to
be SaS for some a ¥ (0, 2] if for all t1,..., tn ¥ T and all real numbers
l1,..., ln, the real random variable ;n

j=1 ljX(tj) is SaS-distributed.
We shall restrict ourselves to SaS-processes possessing a version (the

finite dimensional distributions coincide) which admits an integral repre-
sentation in the sense of Chap. 13 in Samorodnitsky and Taqqu. (18) In
other words, we investigate SaS-processes X for which there exist a finite
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measure space (S, s) and a kernel K: T×SQ R such that for each t ¥ T the
function sQK(t, s) is measurable with

F
S
|K(t, s)|a ds(s) <.

and for all l1,..., ln ¥ R and all t1,..., tn ¥ T we have

E exp 1 i C
n

j=1
ljX(tj)2=exp 1 −F

S

: C
n

j=1
ljK(tj, s):

a

ds(s)2 . (5.1)

The class of those SaS-processes is very broad and contains all special
processes of interest such as SaS processes with property S given in
Samorodnitsky and Taqqu. (18)

Let X be an SaS-process generated by K: T×SQ R via (5.1). Our aim
is to construct a suitable La-valued operator u tightly related to X. This
allows us to transform entropy estimates of u into those of sets generated
by X and vice versa.
As a first example of such a construction we investigate bounded pro-

cesses. Suppose that X has a bounded version, i.e., there is a version X̃
of X, defined on W̃, such that for each w̃ ¥ W̃ we have

sup
t ¥ T
|X̃(t)(w̃)| <..

If K is the corresponding kernel to X (or X̃) by Theorem 10.2.3 in
Samorodnitsky and Taqqu (18) it follows that

sup 3F
S
sup
t ¥ T0

|K(t, s)|a ds(s) : T0 … T countable4 <.. (5.2)

Hence, if the Banach space l1(T) is defined by

l1(T) :=3x=(xt)t ¥ T : C
t ¥ T
|xt | <.4 ,

then the operator u with

u(x)(s) :=C
t ¥ T
xt ·K(t, s), x=(xt)t ¥ T ¥ l1(T), (5.3)

is well-defined and bounded from l1(T) into La(S, s) because of (5.2).
Recall that for x ¥ l1(T) at most countable many of the xt’s are different
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from zero. By similar arguments, u is even order bounded. Fix now a posi-
tive number r < a. By a well-known property of stable random variables

1E : C
n

j=1
ljX(tj):

r21/r=ca, r ·> C
n

j=1
lj ·K(tj, · )>

a

for some universal ca, r > 0. Thus, if we define

s(X) :=3 C
n

j=1
ljX(tj): C

n

j=1
|lj | [ 1, tj ¥ T4

and regard it as subset of Lr(W, P), by the definition of u via (5.3) it easily
follows that

en(u)=c
−1
a, r · en(s(X)) (5.4)

where the entropy on the right hand side of (5.4) is taken with respect to
the Lr-distance. In other words, compactness properties of the operator u
are equivalent to those of the set s(X), the set of symmetric convex com-
binations of paths of X. Unfortunately, it is not known whether or not the
dual of l1(T) (space of bounded functions on T) possesses property D, and
thus in the moment we are not able to apply Theorem 4.5 here.
Let us suppose now that there is a metric d on the index set T for

which (T, d) is separable. Define B(T) as s-algebra of Borel sets (w.r.t. the
topology generated by d). We assume now that the SaS-process X has a
measurable version, i.e., there is a version X̃ of X for which (t, w̃)Q
X̃(t, w̃) is measurable on T× W̃ w.r.t. the product s-algebra. Note that by
Corollary 11.1.2 in Samorodnitsky and Taqqu (18) such a measurable version
exists iff the kernel K with (5.1) may be chosen measurable on T×S. Next
let X be a measurable SaS-process over T and let r be some finite measure
on (T, B(T)). Then we are interested in processes X that satisfy

P 1F
T
|X(t)|p dr(t) <.2=1 (5.5)

for some p ¥ [1,.] with the usual modification for p=.. In particular,
(5.5) implies that for each g ¥ Lq(T, r), q−1+p−1=1, the random variable

Xg :=F
T
X(t) g(t) dr(t) (5.6)

is well-defined. In fact, it is not clear at all that Xg is SaS.
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Proposition 5.1. Let X be a measurable SaS-process over a separable
metric space T satisfying (5.5) for some p ¥ [1,.]. For g ¥ Lq(T, r) define
Xg by (5.6). Then the following are valid:

(1) The random variable Xg is SaS.

(2) It holds that

E e i Xg=exp 1 −F
S

:F
T
K(t, s) g(t) dr(t):

a

ds(s)2. (5.7)

Proof. For g’s in Lq(T, r) with g \ 0, both assertions follow directly
from Theorem 11.4.1 in Samorodnitsky and Taqqu. (18) The arguments
there can be modified to treat the general case by considering the positive
and negative part of g ¥ Lq separately. We omit the details.
The preceding proposition implies in particular that

F
T
K(t, · ) g(t) dr(t) ¥ La(S, s)

for each g ¥ Lq(T, r). Hence, if

(ug)(s) :=F
T
K(t, s) g(t) dr(t), g ¥ Lq(T, r),

then u maps Lq(T, r) into La(S, s) and it is bounded by the Closed Graph
Theorem. In this notation (5.7) may now be written as

E exp 1 i F
T
X(t) g(t) dr(t)2=exp(− ||u(g)||aa).

Using similar arguments as in the case of bounded processes it follows

en(u)=c
−1
a, r · en(sp(X)) (5.8)

where

sp(X) :=3F
T
X(t) g(t) dr(t): ||g||Lq(T, r) [ 14 (5.9)

and the entropy numbers of sp(X) are taken w.r.t. Lr-norm for a certain
positive r < a.
Since for 1 [ p [ 2 the space Lp(T, r) possesses property D, Theorem 4.5

applies here and leads to the following.
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Proposition 5.2. Let X be a measurable SaS-process satisfying (5.5)
for a certain p ¥ [1, 2]. If

en(sp(X)) \ c · n−1/h · (log n)b (5.10)

for some h > 0 with 1/h > [1−1/a]+, then

− log P 1F
T
|X(t)|p dr(t) < ep2 \ cŒ · e−l · log(1/e)bl

where 1/l=1/h+1/a−1.

Remark. Note that the preceding proposition gives also some infor-
mation for the case p=. (provided X is bounded). Indeed, since ||X||p [
r(T)1/p · ||X||., condition (5.10) for some p [ 2 implies

− log P(sup
t ¥ T
|X(t)| < e) \ cŒ · e−l · log(1/e)bl

for the same l.
Next we present some interesting examples.

Example 1. Let u from Lq[0, 1] to La[0, 1] be defined by

(ug)(s) :=F
1

s
g(t) dt.

This operator is tightly related with a-Levy motion Za on [0, 1], i.e., for
g ¥ Lq[0, 1] we have

E exp 1 i F 1
0
Za(t) g(t) dt2=exp(−||u(g)||aa).

Since (cf. Lifshits and Linde (10)) for all p and a we have en(u) % n−1, Prop-
osition 5.2 and the following remark imply

− log P(||Za ||p < e) \ c · e−a

for 1 [ p [. and 0 < a < 2. This is the correct order as shown in Chen
et al. (3) and Mogulski. (14)

Example 2. Let w: (0,.)Q [0,.) be a weight function such that
for some p ¥ [1,.) we have

P 1F.
0
|w(t) Za(t)|p dt <.2=1. (5.11)
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Here as before (Za(t))t \ 0 denotes a standard a-stable Levy motion. Note
that (cf. Samorodnitsky and Taqqu, (18) p. 510) we have (5.11) iff

F
.

0
w(t)p tp/a dt <. for 0 < p < a,

F
.

0

5F.
s
w(t)p dt6

a/p

ds <. for 0 < a < p.

In the case a=p property (5.11) is satisfied iff

F
.

0
t w(t)p dt <.

and, moreover,

F
.

0
F
.

s
w(t)p · log+ 1 t ·F

.

s
w(x)p dx2

−1

dt ds <..

A corresponding operator u: Lq(0,.)Q La(0,.) may be defined by

(uf)(s)=F
.

s
w(t) ·f(t) dt. (5.12)

It was shown in Lifshits and Linde (10) that (for a \ 1) the operator u
defined by (5.12) admits the following lower entropy estimate:

lim inf
nQ.

nen(u) \ c · ||w||r (5.13)

where 1/r :=1/p+1/a. If we combine (5.13) with Theorem 4.5 we obtain
the following.

Proposition 5.3. Suppose 1 [ p [ 2 and 1 [ a < 2. Let w be a weight
function satisfying (5.11). Then

lim inf
eQ 0

ea ·5− log P 1F.
0
|w(t) Za(t)|p dt < ep26

\ c ·1F.
0
w(t)ap/(a+p) dt2

1+a/p

for some universal c > 0.
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This result plays an important role in our further investigation in Li
and Linde (8) on the exact small ball constants for stable processes under
weighted Lp-norm.

Example 3. For 1 < a < 2 and 1/a <H < 1 define the kernel K on
[0, 1]×(−., 1] by

K(t, s) :=(t−s)H−1/a+ −(−s)H−1/a+ .

The SaS-process XH=(XH(t))0 [ t [ 1 generated by this K is usually called
linear fractional a-stable motion (cf. Samorodnitsky and Taqqu (18) for more
information). Let u: Lq[0, 1]Q La(−., 1] be the integral operator with
kernel K from above. Then u may be written as

(ug)(s) :=˛ (u1 g)(s): 0 [ s [ 1

(u2 g)(s): −. < s < 0

where u1: Lq[0, 1]Q La[0, 1] is given by

(u1 g)(s) :=F
1

s
(t−s)H−1/a g(t) dt, 0 [ s [ 1,

while u2: Lq[0, 1]Q La(−., 0) acts as

(u2 g)(s) :=F
1

0
[(t−s)H−1/a−(−s)H−1/a] g(t) dt, −. < s < 0.

Of course, for all g ¥ Lq[0, 1],

||ug||aa=||u1 g||
a
a+||u2 g||

a
a \ ||u1 g||

a
a,

and hence (cf. Lifshits and Linde (10)) we get

en(u) \ en(u1), n ¥N. (5.14)

On the other hand, by a change of variables u1 may be isometrically trans-
formed into v: Lq[0, 1]Q La[0, 1] with

(vf)(t) :=F
t

0
(t−s)H−1/a f(s) ds, 0 [ s [ 1,

thus en(v)=en(u1). But it is well-known (cf. Edmunds and Triebel (4) or
Lifshits and Linde (10)) that

en(v) % n−(H−1/a+1),
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and hence by (5.14) we finally obtain

lim inf
nQ.

nH−1/a+1 en(u) > 0. (5.15)

An application of Theorem 4.5 (or Proposition 5.2) to (5.15) implies now
the following.

Proposition 5.4. Let XH=(XH(t))t ¥ [0, 1] be a linear fractional a-stable
motion of order a ¥ (1, 2) and suppose 1/a <H < 1. Then for any
p ¥ [1,.] it follows that

− log P(||XH||Lp[0, 1] < e) \ c · e−1/H.

For p=. this was proved in Samorodnitsky (17) by different methods.
It is an open question whether or not e−1/H is the correct order.

Example 4. Our last example deals with an SaS-process indexed by
[0, 1]d for some d \ 1. If u from Lq[0, 1]d to La[0, 1]d is defined by

(ug)(s) :=F
1

s1
· · ·F

1

sd

g(t) dtd · · · dt1, s=(s1,..., sd),

the generated SaS-process Zda will be called (d-dimensional) a-stable sheet.
Note that for a=2 we obtain the ordinary d-dimensional Brownian sheet.
In view of Proposition 11.3.2 in Samorodnitsky and Taqqu, (18) for any
p ¥ [1,.)

P 1F
[0, 1]d

|Zda(t)|
p dt <.2=1.

An easy transformation gives en(u)=en(v) where v from Lq[0, 1]d to
La[0, 1]d is defined by

(vf)(t) :=F
t1

0
· · ·F

td

0
f(s) dsd · · · ds1, t=(t1,..., td).

It is known (cf. Temlyakov (21)) that for a \ 1

en(v) % n−1(log n)d−1,

and hence Proposition 5.2 applies with h=1 and b=d−1 and this leads to

− log P(||Zda ||Lp[0, 1]d < e) \ c · e−a log(1/e)a(d−1) (5.16)
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for all p ¥ [1,.]. It is a challenge to find the correct rate in (5.16). Even in
the Gaussian case (a=2, i.e Brownian sheet) with p=., the correct rate
in (5.16) is unknown for d \ 3 (cf. Li and Shao (9)).
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