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Abstract. Let ξ = (ξi , 1 ≤ i ≤ n) and η = (ηi, 1 ≤ i ≤ n) be standard normal random
variables with covariance matrices R1 = (r1

ij ) and R0 = (r0
ij ), respectively. Slepian’s lemma

says that if r1
ij ≥ r0

ij for 1 ≤ i, j ≤ n, the lower bound P(ξi ≤ u for 1 ≤ i ≤ n)/P(ηi ≤
u for 1 ≤ i ≤ n) is at least 1. In this paper an upper bound is given. The usefulness of
the upper bound is justified with three concrete applications: (i) the new law of the iterated
logarithm of Erdős and Révész, (ii) the probability that a random polynomial does not have
a real zero and (iii) the random pursuit problem for fractional Brownian particles. In partic-
ular, a conjecture of Kesten (1992) on the random pursuit problem for Brownian particles is
confirmed, which leads to estimates of principal eigenvalues.

1. Introduction

It is well known now that Slepian’s inequality (lemma) and its variations provide
a very useful tool in the theory of Gaussian processes and probability in Banach
spaces. Very nice discussions with various applications can be found in Ledoux
and Talagrand (1991) and Lifshits (1995). The simplest form of Slepian’s lemma
for centered Gaussian vectors (X1, · · · , Xn) and (Y1, · · · , Yn) states that for any x,

P

(
max

1≤i≤n
Xi ≤ x

)
≤ P

(
max

1≤i≤n
Yi ≤ x

)
. (1.1)

if EX2
i = E Y 2

i and EXiXj ≤ E YiYj for all i, j = 1, 2, ..., n. An interesting and
useful extension of Slepian’s inequality, involving min-max, etc, can be found in
Gordon (1985) with applications to local structure of finite-dimensional Banach
spaces.

Another well-known and useful extension in (1.2) provides also estimate in
the ‘reverse’ direction. To state it and fix the notation for the rest of this paper, let
ξ1, ξ2, · · · , ξn be standard normal random variables with covariance matrix R1 =
(r1

ij ), and η1, η2, · · · , ηn standard normal random variables with covariance matrix

R0 = (r0
ij ). Put ρij = max(|r1

ij |, |r0
ij |). Then as stated in Leadbetter, Lindgren and
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Rootzén (1983), page 81, and based on early works of Slepian (1962), Berman
(1964, 1971), Cramér and Leadbetter (1967),

P

( n⋂
j=1

{ξj ≤ uj }
)

− P

( n⋂
j=1

{ηj ≤ uj }
)

≤ 1

2π

∑
1≤i<j≤n

(r1
ij − r0

ij )
+ (1 − ρ2

ij )
−1/2 exp

(
−

(u2
i + u2

j )

2(1 + ρij )

)
, (1.2)

for any real numbers ui, i = 1, 2, · · · , n.
The above normal comparison inequality plays a very important role in the ex-

treme value theory. In a typical situation, one has r1
ij ≥ r0

ij for every 1 ≤ i < j ≤ n

and wants to estimate the probability of P(ξj ≤ uj for j = 1, · · · , n), knowing the
probability P(ηj ≤ uj for j = 1, · · · , n). Then, (1.2) also implies zero as a lower
bound for the left hand side of (1.2). However, the upper bound in (1.2) may be
useless when the error bound is not close to zero.

The main aim of this paper is to give two refinements of the upper bound in (1.2)
driven by three applications. The first application is the determination of constants
in the so-called law of the iterated logarithm of Erdős and Révész (1990), based
on the work of Shao (1994). The second application is an estimate of the decay
exponent of the probability that a random polynomial does not have a real zero,
which improves the one in Dembo, Poonen, Shao and Zeitouni (2000). The third
and the most significant application is to the random pursuit problem for fraction-
al Brownian particles. In particular, a conjecture of Kesten (1992) on the random
pursuit problem for Brownian particles is confirmed. From exit probability point
of view, the result is about the growth rate of the first eigenvalue of the Dirichlet
problem for the Laplace-Beltrami operator on a subset of the unit sphere S

n in R
n+1

as dimension n → ∞. From a large deviation point of view, the result is about the
growth rate of an I-function on the number of Brownian particles. All results in our
applications are new and we expect more to follow in the future.

The rest of the paper is arranged as follows. Precise statements of main results
and their consequences are given in Section 2. Their proofs are delayed to Section
4. Three applications are given in Section 3 with proofs.

2. Comparison inequalities

We use the notations introduced before. Our first result shows that the headache
term (1 − ρ2

ij )
−1/2 in (1.2) can be removed.

Theorem 2.1. We have

P

( n⋂
j=1

{ξj ≤ uj }
)

− P

( n⋂
j=1

{ηj ≤ uj }
)

≤ 1

2π

∑
1≤i<j≤n

(arcsin(r1
ij ) − arcsin(r0

ij ))
+ exp

(
−

(u2
i + u2

j )

2(1 + ρij )

)
, (2.3)

for any real numbers ui, i = 1, 2, · · · , n.



496 W.V. Li, Q.-M. Shao

Since arcsin(x) ≤ xπ/2 for 0 ≤ x ≤ 1, a direct consequence of Theorem 2.1
is

Corollary 2.1. Let ξ1, ξ2, · · · , ξn be standard normal variables with Cov(ξi, ξj ) =
rij . Then

|P
( n⋂
j=1

{ξj ≤ uj }
)

−
n∏

j=1

P(ξj ≤ uj )| ≤ 1

4

∑
1≤i<j≤n

|rij | exp
(

−
u2
i + u2

j

2(1 + |rij |)
)

for any real numbers ui, i = 1, 2, · · · , n.

By using Corollary 2.1 instead of (1.2), one can remove unnecessary condi-
tions in several results in Leadbetter, Lindgren and Rootzén (1983). For example,
the condition “supn≥1 |rn| < 1” in Lemmas 4.3.1 and Lemma 4.4.1 there can be
taken away.

Our next theorem gives a sharper bound which is especially appealing when ui
is not too large, and is the main contribution of this paper. All applications in the
next section depend on it.

Theorem 2.2. Let n ≥ 3. and let (ξj , 1 ≤ j ≤ n) and (ηj , 1 ≤ j ≤ n) be standard
normal random variables with covariance matrices R1 = (r1

ij ) and R0 = (r0
ij ),

respectively. Assume

r1
ij ≥ r0

ij ≥ 0 for all 1 ≤ i, j ≤ n (2.4)

Then

P

( n⋂
j=1

{ηj ≤ uj }
)

≤ P

( n⋂
j=1

{ξj ≤ uj }
)

≤ P

( n⋂
j=1

{ηj ≤ uj }
)

exp
{ ∑

1≤i<j≤n

ln
(π − 2 arcsin(r0

ij )

π − 2 arcsin(r1
ij )

)
exp

(
−

(u2
i + u2

j )

2(1 + r1
ij )

)}

(2.5)

for any ui ≥ 0, i = 1, 2, · · · , n satisfying

(rlki−rlij r
l
kj )ui+(rlkj−rlij r

l
ki)uj ≥ 0 for l = 0, 1 and for all 1 ≤ i, j, k ≤ n (2.6)

If ui = u ≥ 0 for every i, then

(rlki − rlij r
l
kj )ui + (rlkj − rlij r

l
ki)uj = u(rlki + rlkj )(1 − rlij ) ≥ 0

for all 1 ≤ i, j, k ≤ n. So, (2.6) is satisfied. Thus, we have
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Corollary 2.2. Let n ≥ 3. and let (ξj , 1 ≤ j ≤ n) be standard normal random
variables with covariance matrix R = (rij ). Assume that rij ≥ 0. Then

P

( m⋂
j=1

{ξj ≤ u}
)
P

( ⋂
m<j≤n

{ξj ≤ u}
)

≤ P

( n⋂
j=1

{ξj ≤ u}
)

≤ P

( m⋂
j=1

{ξj ≤ u}
)
P

( ⋂
m<j≤n

{ξj ≤ u}
)
.

exp
{ m∑

i=1

n∑
j=m+1

ln
( π

π − 2 arcsin(rij )

)
exp

(
− u2/rij

)}
(2.7)

for 1 ≤ m ≤ n − 1 and u ≥ 0, and

P(ξ1 ≤ u)n ≤ P

( n⋂
j=1

{ξj ≤ u}
)

≤ P(ξ1 ≤ u)n · exp
{ ∑

1≤i<j≤n

ln
( π

π−2 arcsin(rij )

)
exp

(
−u2/rij

)}

(2.8)

for u ≥ 0.

We remark that if rlki ≥ rlij r
l
kj holds for every 1 ≤ i, j, k ≤ n and l = 0, 1,

then (2.6) is also satisfied. Moreover, it follows from the proof of Theorem 2.2 (see
(4.5) in Section 4) that the right hand side of (2.5) can be replaced by

P

( n⋂
j=1

{ηj ≤ uj }
)

exp
{ 2

π

∑
1≤i<j≤n

(arcsin(r1
ij )−arcsin(r0

ij )) exp
(
−

u2
i + u2

j

2(1 + r1
ij )

)}

Hence, we have

Corollary 2.3. Let {X(t), t ≥ 0} be the Ornstein-Uhlenbeck process, i.e., a sta-
tionary Gaussian process with covariance function

ρ(t, s) := E (X(t)X(s)) = e−|t−s|/2.

Let
Ak = {X(tk,l) ≤ xk,l for l = 0, · · · ,mk}

with all tk,l distinct and xk,l ≥ 0. Then

P

( n⋂
k=1

Ak

)

≤
n∏

k=1

P(Ak) exp
{ ∑

1≤i<j≤n

mj∑
u=0

mi∑
v=0

ρ(ti,v, tj,u) exp
(

−
x2
i,v + x2

j,u

2(1 + ρ(ti,v, tj,u))

)}
.
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The proof of Theorems 2.1 and 2.2 will be given in Section 4. It would be
interesting to see if (2.5) remains true for any real numbers ui without assuming
condition (2.6). Note also the well known fact that in the setting of (1.1), Sle-
pian’s type inequality does not hold for two sided case with absolute value. See, for
example, Tong (1980). But, it may be possible to have comparisons of two sided

probabilities P

(
∩m
j=1 {|ξj | ≤ uj }

)
and P

(
∩m
j=1 {|ηj | ≤ uj }

)
with an additional

exp-term similar to the one in (2.5). This could be a very useful tool for estimating
small ball probabilities. See a recent survey of Li and Shao (2001a) on the sub-
ject. However, at this time, we are unable to find a right formulation together with
interesting applications in this direction.

3. Applications

In this section we give three applications to demonstrate the usefulness of the
inequality (2.5).

3.1. The law of the iterated logarithm of Erdős and Révész

Our first application is to the law of the iterated logarithm of Erdős and Révész.
Let {W(t), t ≥ 0} be the standard Brownian motion and define

ξδ(t) = sup{s : 0 ≤ s ≤ t, W(s) ≥ (
2(1 − δ)s log2 s

)1/2},
for t > 0 and 0 ≤ δ < 1, where log2(s) = ln ln(max(e2, s)). Erdős and Révész
(1990) obtained a new law of the iterated logarithm

lim inf
t→∞

(log2 t)
1/2

log3 t · log t
ln

ξ0(t)

t
= −C a.s.

for some constant C with 1/4 ≤ C ≤ 214, where log3(t) = ln ln ln max(e3, t). The
exact value C = 3

√
π was found in Shao (1994). Moreover, it was proved there

that

lim inf
t→∞ (log t)δ−1(log2 t)

−1/2 · ln
ξδ(t)

t
= −2δ

√
π

1 − δ
a.s. (3.9)

for 0 < δ ≤ 1/2. It is natural to conjecture that (3.9) holds for all 0 < δ < 1. With
the help of Corollary 2.3, we can give an affirmative answer to the conjecture.

Theorem 3.1. The result (3.9) holds for every 0 < δ < 1.

Proof. By using Corollary 2.3 instead of Lemma 2.4 in Shao (1994) (see Lemma
2.5 there), for each 0 < δ < 1 and 0 < η < 1/2, there exists a constant n = n(δ, η)

such that

P

( ⋂
ea≤s≤eb

{ W(s)√
2(1 − δ)s log2 s

≤ 1
})

≤ 6 exp
(

− 1 − 2η

2δ

√
1 − δ

π
(log a)1/2(bδ − aδ)

)
(3.10)

for n ≤ a + 2 ≤ b + a1−δ . The remaining of the proof follows exactly the same
lines of that of Theorem 1 in Shao (1994).
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3.2. Probability that a random polynomial has no real root

Let ai, i ≥ 0 be i.i.d random variables with zero means and finite moment of all
order and consider the random polynomial

fn(x) =
n∑

i=0

aix
i, −∞ < x < ∞.

Dembo, Poonen, Shao and Zeitouni (2000) proved that

P(fn has no real root) = n−b+o(1)

as n → ∞ through even integers n. The constant b is specified as

b = −4 lim
T→∞

1

T
ln P

(
sup

0≤t≤T

X(t) ≤ 0
)
,

where X(t) is a centered stationary Gaussian process with

EX(s)X(t) = 2e−|t−s|/2

1 + e−|t−s| .

It is proved in Dembo, Poonen, Shao and Zeitouni (2000) that 0.4 ≤ b ≤ 2. Their
simulation suggest b = 0.76 ± 0.03. Recently, Li and Shao (2001b) find two ad-
ditional limiting representations for b and show that b ≤ 1. As another application
of Theorem 2.2, we have

Theorem 3.2.
0.5 < b ≤ 1 (3.11)

Proof. It suffices to show that

P

(
max

1≤i≤3n
X(4i) ≤ 0

)
≤ exp(−0.125(12n)) (3.12)

for n ≥ 1. Let r(x) = 2e−2x/(1 + e−4x). By (2.5),

P

(
max

1≤i≤3n
X(4i) ≤ 0

)

≤P(max
1≤i≤3

X(4i)≤0)n exp
{ ∑

1≤i<j≤n

3∑
k=1

3∑
l=1

ln
( π

π − 2 arcsin(r(3(j−i)+k−l))

)}

≤ P( max
1≤i≤3

X(4i) ≤ 0)n exp
{

3n
∞∑
i=1

ln
( π

π − 2 arcsin(r(3i))

)

+2n
∞∑
i=1

ln
( π

π − 2 arcsin(r(3i + 1))

)
+ 2n

∞∑
i=1

ln
( π

π − 2 arcsin(r(3i − 1))

)

+n

∞∑
i=1

ln
( π

π − 2 arcsin(r(3i + 2))

)
+ n

∞∑
i=1

ln
( π

π − 2 arcsin(r(3i − 2))

)}

:= P( max
1≤i≤3

X(4i) ≤ 0)n exp(λ12n).
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A direct calculation gives λ = 0.02050.... On the other hand, by David (1953)

P( max
1≤i≤3

X(4i) ≤ 0) = 1

8
+ 1

4π
(2 arcsin(r(1)) + arcsin(r(2)))

< 0.17074 < exp(−0.1473 · 12)

Putting the above inequality together yields

P

(
max

1≤i≤3n
X(4i) ≤ 0

)
≤ exp(−(0.1473 − 0.0206)(12n)) ≤ exp(−0.1267(12n)),

as desired.

3.3. Capture time of the fractional Brownian pursuit

A Gaussian process {Bα(t), t ≥ 0} is called a fractional Brownian motion of order
α, 0 < α < 2 if

Bα(0) = 0,EBα(t) = 0 and E (Bα(t) − Bα(s))
2 = |t − s|α

for all t, s ≥ 0. Obviously, it becomes the Brownian motion when α = 1.
Let {Bk,α(t); t ≥ 0}(k = 0, 1, 2, . . . , n) denote independent fractional Brown-

ian motions of order α ∈ (0, 2) and set

τn,α = inf
{
t > 0 : max

1≤k≤n
Bk,α(t) = B0,α(t) + 1

}
.

The stopping time τn,α can be viewed as the capture time in the random pursuit
problem for the fractional Brownian particles; see Kesten (1992) and Li and Shao
(2000a) for more details. A natural question is: when is E (τn,α) finite? The question
is the same as estimating the lower tail probability of max1≤k≤n sup0≤t≤1(Bk,α(t)−
B0,α(t)). In fact, for any s > 0, by the fractional Brownian scaling,

P(τn,α > s) = P

(
max

1≤k≤n
sup

0≤t≤s

(Bk,α(t) − B0,α(t)) < 1
)

= P

(
max

1≤k≤n
sup

0≤t≤1
(Bk,α(t) − B0,α(t)) < s−α/2

)
.

Li and Shao (2000b) show that

P

(
max

1≤k≤n
sup

0≤t≤1
(Bk,α(t) − B0,α(t)) < x

)
= x2γn,α/α+o(1)

as x → 0, where

γn,α := − lim
T→∞

1

T
ln P

(
sup

0≤t≤T

max
1≤k≤n

(Xk,α(t) − X0,α(t)) ≤ 0
)

(3.13)

and Xk,α(t) = e−tα/2Bk,α(e
t ), k = 0, 1, · · · , n, are the fractional Ornstein-Uhlen-

beck process of order α. In other word,

P

(
τn,α > t

)
= t−γn,α+o(1)

as t → ∞ for fixed n.
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It is proved by Kesten (1992) that for the Brownian motion case, α = 1,
γn = γn,1 is of order ln n when n is large. More precisely, Kesten showed that

0 < lim inf
n→∞ γn/ ln n ≤ lim sup

n→∞
γn/ ln n ≤ 1/4

and conjectured the existence of limn→∞ γn/ ln n. Kesten’s method is based on
large deviation results for independent stationary Ornstein-Uhlenbeck processes,
which is hardly applicable for the fractional Brownian motion. As another applica-
tion of Theorem 2.2, our next theorem shows that γn,α is also of order ln n, which
in turn shows that E τn,α is finite when n is large.

In the Brownian motion case, α = 1, with τn = τn,1, E τ5 < ∞ and E τ3 = ∞
are proved in Li and Shao (2000a) by using some distribution identities and the
Faber-Krahn isoperimetric inequality. It is still a conjecture due to Bramson and
Griffeath (1991) that E τ4 < ∞. Their simulation suggested that γ4 ≈ 1.032. Other
representations for γn = γn,1 are discussed after the following main result.

Theorem 3.3. We have

1

dα
≤ lim inf

n→∞
γn,α

ln n
≤ lim sup

n→∞
γn,α

ln n
< ∞ . (3.14)

where dα = 2
∫ ∞

0 (exα + e−xα − (ex − e−x)α)dx. Furthermore, for γn = γn,1,

lim
n→∞

γn

ln n
= 1

4
(3.15)

We need a few remarks about the significance of (3.15) in the setting of Brown-
ian motion. First, τn = τn,1 equals the first exit time by the (n + 1)-dimensional
Brownian motion (B0(t), · · · , Bn(t)) from the “wedge”

Wn+1 = {x = (x0, x1, · · · , xn) ∈ R
n+1 : xi − x0 < 0, 1 ≤ i ≤ n} (3.16)

starting at b = (0,−1, · · · ,−1) ∈ R
n+1. DeBlassie (1987) (see also DeBlassie

(1988) and Bañuelos and Smits (1997)) has shown that

P{τn > t} ∼ c(b)t−γn, as t → ∞, (3.17)

where

γn = 1

2

(√
λ1(Wn+1) + ((n − 1)/2)2 − (n − 1)/2

)
(3.18)

and λ1(Wn+1) is the first (principal) eigenvalue of the Dirichlet problem for the
Laplace-Beltrami operator on the subset Wn+1 ∩ S

n of the unit sphere S
n in R

n+1.
Second, by using distribution identities developed in Li and Shao (2000a), togeth-
er with the first exit time approach above, we also have a somewhat easier (one-
dimension less) representation

γn = 1

2

(√
λ1(Dn) + ((n − 2)/2)2 − (n − 2)/2

)
(3.19)
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and λ1(Dn) is the first eigenvalue of the Dirichlet problem for the Laplace-Beltrami
operator on the subset Dn ∩ S

n−1 of the unit sphere S
n−1 in R

n, where

Dn =
n⋂

i=1

{
x = (xk) ∈ R

n :
i∑

k=1

ai,kxk ≤ 0
}

with ai,k = ((k + 1)k)−1/2 for 1 ≤ k ≤ i − 1 and i ≥ 2, and ai,i = ((i + 1)/i)1/2,
i ≥ 1. Geometrically, Dn can be viewed as the polar set of the unique n unit vec-
tors (up to rotation) in R

n with 60 degree angles between each other. Note that it
seems very difficult to find or estimate λ1(Wn+1) and λ1(Dn) (hence γn) by analytic
method for n large. On the other hand, the probabilistic approach of proving (3.15)
implies

λ1(Wn+1) ∼ λ1(Dn) ∼ 1

2
n ln n as n → ∞

by (3.18) and (3.19). In essence, our probability estimate obtained by using the
new normal comparison inequality provides a way of estimating eigenvalues as
dimension increase. This way of estimating the first eigenvalue for the Dirichlet
problem seems very powerful and more works in this direction will be given in Li
and Shao (2001c). Finally, we conjecture that

lim
n→∞

γn,α

ln n
= 1

dα

based on (3.14) and (3.15).
Before the detailed proof of Theorem 3.3, we need two lemmas. The first is due

to Shao (1999) and is very useful in various contexts. See Li and Shao (2000b) for
some sharp estimates of lower tail probabilities for Gaussian processes, including
fractional Brownian sheets.

Lemma 3.1. Let ξ = (ξ1, ..., ξm) be distributed according to N(0, .ξ ), and η =
(η1, ..., ηm) according to N(0, .η). If .η − .ξ is positive semidefinite, then

∀ C ⊂ R
m, P

(
ξ ∈ C

)
≤ (det(.η)/ det(.ξ ))

1/2
P(η ∈ C)

Our next lemma is a consequence of the (strong) locally nondeterminism for
fractional Brownian motion.

Lemma 3.2. Let Xα(t) = e−tα/2Bα(e
t ) and 0 < t1 < t2 < · · · < tm. Then there

exists a constant Kα > 0 such that

det
(
EXα(ti)Xα(tj )

)
1≤i,j≤m

≥ Km−1
α

m∏
i=2

(1 − e−(ti−ti−1))α.

Furthermore, in the case of Ornstein-Uhlenbeck process, α = 1, we have equality
above with K1 = 1.
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Proof. We have for 2 ≤ i ≤ m,

Var(Bα(ti) |Bα(tj ), 1 ≤ j < i) ≥ Kα(ti − ti−1)
α

given in Monrad and Rootzén (1995) with a nice direct proof and related references
to locally nondeterminism. Thus

det
(
EXα(ti)Xα(tj )

)
1≤i,j≤m

= Var(Xα(t1))

m∏
i=2

Var
(
Xα(ti) |Xα(tj ), 1 ≤ j < i

)

=
m∏
i=2

Var
(
e−tiα/2Xα(e

ti )|e−tj α/2Xα(e
tj ), 1≤j <i

)

≥ Km−1
α

m∏
i=2

e−tiα(eti − eti−1)α

= Km−1
α

m∏
i=2

(1 − e−(ti−ti−1))α.

In the case of Ornstein-Uhlenbeck process, α = 1, the determinant can be evaluated
directly by transformations row(i − 1) − eti−ti−1 row(i) for 2 ≤ i ≤ m.

Proof of Theorem 3.3. The right hand side of (3.14) is proved in Li and Shao
(2000b). So we only deal with the left hand side. Let r(t) = EX0,α(t)X0,α(0) for
t ≥ 0. It is easy to see that

r(t) = 1

2

(
etα/2 + e−tα/2 − (et/2 − e−t/2)α

)

= 1

2

(
e−tα/2 + αe−t (2−α)/2 + O(e−t (4−α)/2)

)
(3.20)

as t → ∞. For 0 < θ < 1/2, let

λθ := λθ,α = 1 + 2
∞∑
i=1

r(θi)

One can easily verify that

lim
θ→0

(1 − θ)2

θλθ
= 1

dα
.

Thus it suffices to show that for any 0 < θ < 1/2, there exists Kθ,α > 0 such that

P

(
max

1≤i≤m
max

1≤k≤n
(Xk,α(iθ) − X0,α(iθ)) ≤ 0

)

≤ Km
θ,α

(
exp

(
− (1 − θ)2

θλθ
(mθ) ln n

)
+ exp

(
− (mθ)nθ

2
))

(3.21)

for n sufficiently large uniformly in m ≥ 1. Here and throughout this section, we
use letter Kθ,α for various positive constants which may be different from line to
line.
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Let ξ = (ξ1, · · · , ξm) and η = (η1, · · · , ηm), where ξi = X0,α(iθ) and ηi are
i.i.d. normal random variables with mean zero and variance λθ which are indepen-
dent of (Xk,α)

n
k=1. Then, .η −.ξ is dominant principal diagonal matrix and hence

positive semidefinite. Applying Lemma 3.1 and Lemma 3.2 yields

P

(
max

1≤i≤m
max

1≤k≤n
(Xk,α(iθ) − X0,α(iθ)) ≤ 0

)

= E

(
P

(
max

1≤i≤m
max

1≤k≤n
(Xk,α(iθ) − X0,α(iθ))≤0|Xk,α(iθ), 1≤k≤n, 1≤ i≤m

))

≤ E

((
det(.η)/ det(.ξ )

)1/2
P

(
max

1≤i≤m
max

1≤k≤n
(Xk,α(iθ) − ηi)

≤ 0 | Xk,α(iθ), 1 ≤ k ≤ n, 1 ≤ i ≤ m
))

=
(

det(.η)/ det(.ξ )
)1/2

P

(
max

1≤i≤m
max

1≤k≤n
(Xk,α(iθ) − ηi) ≤ 0

)

≤ K
m/2
θ,α Jn,m, (3.22)

where
Jn,m = P

(
max

1≤i≤m
max

1≤k≤n
(Xk,α(iθ) − ηi) ≤ 0

)
.

Let a = (2(1−θ) ln n)1/2, l = ∑m
i=1 I {ηi ≤ a} and {i1, i2, · · · , il} = {j : ηj ≤ a}

with i1 < i2 < · · · < il . Then

Jn,m ≤ P(l ≤ θm) + P

(
max

1≤i≤m
max

1≤k≤n
(Xk,α(iθ) − ηi) ≤ 0, l ≥ θm

)

≤ P(l ≤ θm) + P

(
max

1≤j≤l
max

1≤k≤n
Xk,α(ij θ) ≤ a, l > θm

)

≤ P(l≤θm)+E

{
P

(
max

1≤j≤l
max

1≤k≤n
Xk,α(ij θ) ≤ a | l > θm and ij , 1≤j ≤ l

)}

= P(l ≤ θm) + E

{
P

(
max

1≤j≤l
Xα(ij θ) ≤ a | l > θm and ij , 1 ≤ j ≤ l

)n}
.

(3.23)

Noting that P(ηi ≥ a) ≤ exp(−a2/(2λθ )) = exp(−(1 − θ)(ln n)/λθ ) and
∑m

i=1
I {ηi > a} is a binomial random variable with parameters m and P(η1 ≥ a), we
have (see, for example, (2.8) in Shao (1997))

P(l ≤ θm) = P

( m∑
i=1

I {ηi > a} ≥ (1 − θ)m
)

≤ (6P(η1 ≥ a))(1−θ)m ≤ 6m exp
(

− (1 − θ)2

λθ
m ln n

)
.

For given l and ij , 1 ≤ j ≤ l, by (3.20)

∑
1≤j<k≤l

ln
( π

π − 2 arcsin(r((ik − ij )θ))

)
exp(− a2

1 + r(θ)
)
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≤
∑

1≤j≤l

∞∑
k=j+1

ln
( π

π − 2 arcsin(r((ik − ij )θ))

)
exp(− a2

1 + r(θ)
)

≤
∑

1≤j≤l

∞∑
i=1

ln
( π

π − 2 arcsin(r(iθ))

)
exp(− a2

1 + r(θ)
)

= Kθ,αl exp(− a2

1 + r(θ)
)

for some finite Kθ,α . Applying Corollary 2.2 yields for given l and ij , 1 ≤ j ≤ l,
and sufficiently large n

P

(
max

1≤j≤l
Xα(ij θ) ≤ a

)
≤ exp

(
Kθ,αl exp(− a2

1 + r(θ)
)

)
· P

l (Z ≤ a)

≤ exp

(
Kθ,αl exp(− a2

1 + r(θ)
) − l · P(Z > a)

)

≤ exp
(
Kθ,α l · n−2(1−θ)/(1+r(θ)) − l · n−(1−θ)

)

≤ exp(−l · n−(1−θ2))

for sufficiently large n. Therefore

E

{
P

(
max

1≤j≤l
X1(ilθ) ≤ a | l > mθ and ij , 1 ≤ j ≤ l

)n} ≤ exp
(

− θmnθ
2
)
.

(3.24)
This proves (3.21), by (3.22) – (3.24).

4. Proof of Theorems 2.2 and 2.1

Proof of Theorem 2.2. Let

Rh = hR1 + (1 − h)R0 = (rhij ) for 0 ≤ h ≤ 1.

Let ζ = (ζ1, · · · , ζn) := (ζ h1 , · · · , ζ hn ) be normal random variables with covariance
matrix Rh, fh be the density function of ζ and

F(h) =
∫ u

−∞
fh(y1, · · · , yn)dy,

where u = (u1, · · · , un) and dy = dy1 · · · dyn. Then

F(1) = P

( n⋂
j=1

{ξj ≤ uj }
)

and F(0) = P

( n⋂
j=1

{ηj ≤ uj }
)
.

Put

g(h) = exp
{ ∑

1≤i<j≤n

ln
(π − 2 arcsin(r0

ij )

π − 2 arcsin(rhij )

)
exp

(
−

(u2
i + u2

j )

2(1 + r1
ij )

)}
.
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It suffices to show that F(h)/g(h) is non-increasing, or equivalently,

g(h)F ′(h) ≤ g′(h)F (h) for 0 ≤ h ≤ 1. (4.1)

It is known and easy to see that (cf. [13] , p.82)

F ′(h) =
∑

1≤i<j≤n

(r1
ij − r0

ij )

∫ u′

−∞
fh(yi = ui, yj = uj ) d y′, (4.2)

where fh(yi = ui, yj = uj ) denotes the function of n − 2 variables formed by
putting yi = ui, yj = uj , and the integration is over the remaining variables.
Noting that

g′(h)/g(h) =
∑

1≤i<j≤n

2(r1
ij − r0

ij )

(π − 2 arcsin(rhij ))(1 − (rhij )
2)1/2

exp
(

−
u2
i + u2

j

2(1 + r1
ij )

)
,

we only need to prove that

∫ u′

−∞
fh(yi = ui, yj = uj )dy′

≤ 2

(π − 2 arcsin(rhij ))(1 − (rhij )
2)1/2

exp
(

−
u2
i + u2

j

2(1 + r1
ij )

)
P

( n⋂
l=1

{ζl ≤ ul}
)

(4.3)

for 1 ≤ i < j ≤ n.
Let φ(x, y; r) be the standard bivariate normal density with correlation coeffi-

cient r . Then, we can write

∫ u′

−∞
fh(yi = ui, yj = uj ) d y′ = φ(ui, uj ; rhij )P(ζ′ ≤ u′ | ζi = ui, ζj = uj ).

(4.4)
For the sake of simplicity, we work only with i = 1, j = 2. Since (rhi1−rh12 r

h
i2)u1+

(rhi2 −rh12 r
h
i1)u2 is a concave function of h for k = 3, · · · , n, condition (2.6) implies

that
(rhk1 − rh12 r

h
k2)u1 + (rhk2 − rh12 r

h
k1)u2 ≥ 0

for 0 ≤ h ≤ 1. Noting that

{ζk − rhk1 − rh12 r
h
k2

1 − (rh12)
2

ζ1 − rhk2 − rh12 r
h
k1

1 − (rh12)
2

ζ2, k = 3, · · · , n} and {ζ1, ζ2}

are independent, we have

P

( n⋂
j=3

{ζj ≤ uj } | ζ1 = u1, ζ2 = u2

)

= P

( n⋂
j=3

{
ζj − rhj1−rh12 r

h
j2

1−(rh12)
2 ζ1− rhj2−rh12 r

h
j1

1−(rh12)
2 ζ2 ≤uj − rhj1−rh12 r

h
j2

1−(rh12)
2 u1 − rhj2−rh12 r

h
j1

1−(rh12)
2 u2

})
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≤ P

( n⋂
j=3

{
ζj ≤ uj + 1

1 − (rh12)
2

(
(rhj1 − rh12 r

h
j2)ζ1 + (rhj2 − rh12r

h
j1)ζ2

)})

=
P

(
ζ1−rh12ζ2≤0,ζ2−rh12ζ1≤0,ζj≤uj+ 1

1−(rh12)
2

(
rhj1(ζ1−rh12ζ2)+rhj2(ζ2−rh12ζ1)

)
,j=3,···,n

)

P

(
ζ1−rh12ζ2≤0,ζ2−rh12ζ1≤0

)

≤
P

(
ζ1 − rh12ζ2 ≤ 0, ζ2 − rh12ζ1 ≤ 0, ζj ≤ uj , j = 3, · · · , n

)

P

(
ζ1 − rh12ζ2 ≤ 0, ζ2 − rh12ζ1 ≤ 0

)

≤
P

(
ζ1 ≤ 0, ζ2 ≤ 0, ζj ≤ uj , j = 3, · · · , n

)

P

(
ζ1 − rh12ζ2 ≤ 0, ζ2 − rh12ζ1 ≤ 0

)

≤
P

( ⋂n
j=1{ζj ≤ uj }

)

P

(
ζ1 − rh12ζ2 ≤ 0, ζ2 − rh12ζ1 ≤ 0

) . (4.5)

It is easy to see that (cf. [13], p.83)

φ(u1, u2; rh12) ≤ 1

2π(1 − (rh12)
2)1/2

exp
(

− u2
1 + u2

2

2(1 + r1
12)

)
. (4.6)

Noting that corr(ζ1 − rh12ζ2, ζ2 − rh12ζ1) = −rh12, we have

P(ζ1 − rh12ζ2 ≤ 0, ζ2 − rh12ζ1 ≤ 0) = π − 2 arcsin(rh12)

4π

which can be found in David (1953).
Putting the above inequalities together yields (4.3) for i = 1 and j = 2.

Similarly, (4.3) holds for general 1 ≤ i < j ≤ n. This finishes the proof.
Proof of Theorem 2.1. The proof follows the same line as that of Theorem 4.2.1 in
Leadbetter, Lindgren and Rootzén (1983) with a modification given in (4.6) and
the fact that

∫ 1

0

1

(1 − (rhij )
2)1/2

dh =
∫ 1

0

1

(1 − (h(r1
ij − r0

ij ) + r0
ij )

2)1/2
dh

= 1

r1
ij − r0

ij

∫ r1
ij

r0
ij

1

(1 − h2)1/2
dh

= 1

r1
ij − r0

ij

(
arcsin(r1

ij ) − arcsin(r0
ij )

)
.

We omit the details.
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